Tìm số tự nhiên n,biết rằng: (2n+5) chia hết (n+2)
Biết rằng số tự nhiên n chia hết cho 2 và n2- 2n chia hết cho 5. Hãy tìm chữ số tận cùng của n.
Gợi ý : n^2 - 2n có chữ số tận cùng là 0 hoặc 5
Vì n chia hết cho 2 => n có chữ số tận cùng là 0;2;4;6;8
Xét từng TH và lập luận để bớt TH cần xét
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1+2+3+4+5+6+7+8+9=133456 hi hi
đào xuân anh sao mày gi sai hả
???????????????????
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6
Bài 1: Tìm số tự nhiên n để:
a) (3n + 1) ⋮ (n - 1) b) (n - 3) ⋮ (2n - 1)
Bài 2:
a) Tìm số tự nhiên có hai chữ số giống nhau, biết rằng số đó chia hết cho 2 và còn chia cho 5 thì dư 2.
b) Tìm số có ba chữ số giống nhau, biết rằng số đó chia hết cho 5, còn chia 2 thì dư 1.
c) Tìm số có hai chữ số giống nhau, biết rằng số đó chia hết cho 3 và chia cho 5 thì dư 1.
d) Tìm tập hợp các số tự nhiên vừ chia hết cho 2, vừa chia hết cho 5 và 132 < x < 178.
Bài 3: Tìm các số tự nhiên x,y biết:
a) \(\overline{23x5y}\) chia hết cho 2, 5 và 9
b)\(\overline{2x3y}\) chia hết cho 2, 5 và chia cho 9 dư 1
c) \(\overline{2x3}\) + \(\overline{3y5}\) chia hết cho 9 và x - y = 3
d) \(\overline{x378y}\) chia hết cho 72
Bài 4: Tìm tất cả các số tự nhiên n sao cho:
a) (n + 7) ⋮ (n + 1) b) (3n + 19) ⋮ (3n - 2) c) (4n +29) ⋮ (2n + 1)
2/
a/
Gọi số cần tìm là \(\overline{bb}\)
Theo đề bài \(\overline{bb}⋮2\) => b chẵn
\(\overline{bb}:5\) dư 2 => b={2;7}
Do b chẵn => b=2
Số cần tìm \(\overline{bb}=22\)
b/
Gọi số cần tìm là \(\overline{bbb}\)
Theo đề bài \(\overline{bb}:2\) dư 1 => b lẻ
\(\overline{bbb}⋮5\) => b={0;5}
Do b lẻ => b=5
Số cần tìm \(\overline{bbb}=555\)
c/
Gọi số cần tìm là \(\overline{bb}\)
Theo đề bài \(\overline{bb}:5\) dư 1 => b={1;6}
\(\overline{bb}⋮3\Rightarrow b+b=2b⋮3\Rightarrow b⋮3\)
=> b=6
Số cần tìm là \(\overline{bb}=66\)
1/
a/
\(\dfrac{3n+1}{n-1}=\dfrac{3\left(n-1\right)+4}{n-1}=3+\dfrac{4}{n-1}\)
\(\left(3n+1\right)⋮\left(n-1\right)\) khi \(4⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)=\left\{-4;-2;-1;1;2;4\right\}\Rightarrow n=\left\{-3;-1;0;2;3;5\right\}\)
b/
\(\left(n-3\right)⋮\left(2n-1\right)\Rightarrow2\left(n-3\right)⋮\left(2n-1\right)\)
\(\dfrac{2\left(n-3\right)}{2n-1}=\dfrac{2n-6}{2n-1}=\dfrac{\left(2n-1\right)-5}{2n-1}=1-\dfrac{5}{2n-1}\)
\(2\left(n-3\right)⋮\left(2n-1\right)\) khi \(5⋮\left(2n-1\right)\Rightarrow\left(2n-1\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n=\left\{-2;0;1;3\right\}\)
Biết rằng số tự nhiên n chia hết cho 2 và n2 - 2n chia hết cho 5. Hãy tìm chữ số tận cùng của n.
giup em vss mai em thi roi. C.onn mn=(
n chia hết cho 2
=>n có chữ số tận cùng là 0;2;4;6;8
=>n=10k; n=10k+2;n=10k+4;n=10k+6;n=10k+8
Đặt \(A=n^2-2n\)
\(=n\left(n-2\right)\)
TH1: n=10k
\(A=n\left(n-2\right)=10k\left(10k-2\right)⋮5\)
=>Nhận
TH2: n=10k+2
=>\(A=n\left(n-2\right)=\left(10k+2\right)\left(10k+2-2\right)=10k\left(10k+2\right)⋮5\)
=>Nhận
TH3: n=10k+4
\(A=n\left(n-2\right)\)
\(=\left(10k+4\right)\left(10k+4-2\right)\)
\(=\left(10k+4\right)\left(10k+2\right)\) không chia hết cho 5
=>Loại
TH4: n=10k+6
A=n(n-2)
=(10k+6)(10k+6-2)
=(10k+6)(10k+4) không chia hết cho 5
=>Loại
Th5: n=10k+8
A=n(n-2)
=(10k+8)(10k+8-2)
=(10k+8)(10k+6) không chia hết cho 5
=>Loại
Vậy: n có chữ số tận cùng là 0 hoặc 2
n chia hết cho 2
=>n có chữ số tận cùng là 0;2;4;6;8
=>n=10k; n=10k+2;n=10k+4;n=10k+6;n=10k+8
Đặt A = n 2 − 2 n = n ( n − 2 ) TH1: n=10k A = n ( n − 2 ) = 10 k ( 10 k − 2 ) ⋮ 5
=>Nhận
TH2: n=10k+2
=> A = n ( n − 2 ) = ( 10 k + 2 ) ( 10 k + 2 − 2 ) = 10 k ( 10 k + 2 ) ⋮ 5
=>Nhận
TH3: n=10k+4
A = n ( n − 2 ) = ( 10 k + 4 ) ( 10 k + 4 − 2 ) = ( 10 k + 4 ) ( 10 k + 2 ) không chia hết cho 5
=>Loại TH4: n=10k+6 A=n(n-2) =(10k+6)(10k+6-2) =(10k+6)(10k+4) không chia hết cho 5
=>Loại
Th5: n=10k+8 A=n(n-2) =(10k+8)(10k+8-2) =(10k+8)(10k+6) không chia hết cho 5
=>Loại
Vậy: n có chữ số tận cùng là 0 hoặc 2
Tìm số tự nhiên n , biết rằng :
a) 2n+1 chia hết cho n-3
b) n2+3 chia hết cho n+1
a) 2n+1⋮n-3
2n-6+7⋮n-3
2n-6⋮n-3 ⇒7⋮n-3
n-3∈Ư(7)
Ư(7)={1;-1;7;-7}
⇒n∈{4;2;10;-4}
bài 5:
1) cho A = 5+32+...+32017+32018. Tìm số tự nhiên n biết 2A-1=3n
2) chứng tỏ rằng với mọi số tự nhiên n thì 3n-3+2n-3+3n+1+2n+2 chia hết cho 6
3) tìm tất cả các cặp số tự nhiên (a,b) để 5a +9999 =20b
18) Cho A =\(\dfrac{7^{2016^{2019}}-3^{2016^{2015}}}{5}\)chứng tỏ A là số chẵn.
mn mn mn giúp giúp mình gấp mình sắp đi học rồiiiii
\(2,\\ 3^{n-3}+2^{n-3}+3^{n+1}+2^{n+2}\\ =3^{n-3}\left(1+3^4\right)+2^{n-3}\left(1+2^5\right)\\ =3^{n-3}\cdot82+2^{n-3}\cdot33\)
Vì \(3^{n-3}\cdot82⋮2;⋮3\) nên \(3^{n-3}\cdot82⋮6\)
\(2^{n-3}\cdot33⋮2;⋮3\) nên \(2^{n-3}\cdot33⋮6\)
Do đó tổng trên chia hết cho 6 với mọi \(n\in N\)
1. tìm số tự nhiên n có hai chữ số, biết rằng 2n+1 và 3n+1 đều là các số chính phương.
2.tìm số tự nhiên có hai chữ số, biết rằng nếu nhân nó với 45 thì được một số chính phương.
3.a) Các số tự nhiên n và 2n có tổng các các chữ số bằng nhau. Chứng minh rằng n chia hết cho 9.
b)* tìm số chính phương n cá ba chữ số, biết rằng n chia hết cho 5 và nếu nhân n với 2 thì tổng các chữ số của nó không đổi.
3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9
mà 2n-n=n=>n chia hết cho 9 => đpcm