Câu 5 : ( 1 điểm ) :
Tìm các số nguyên tố a , b , c thỏa mãn : b - a = c - b = 2
tìm các số nguyên dương a;b;c;d thỏa mãn a+2b+3c=3d!+1.biết tồn tại các số nguyên tố p;q thỏa mãn a=(p+1)(2p+1)=(q+1)(q-1)2
Tìm tất cả các số nguyên tố a,b,c thỏa mãn : a.(a+1) + b.(b+1) = c.(c+1)
Tìm tất cả các số nguyên tố a;b;c thỏa mãn a^2+b^2+c^2=abc
Tìm các số nguyên tố a, b, c thỏa mãn: a^2 + b^2 + c^2 = 3494
ta có 3494 = 2.
Bài giải : Giả sử a < b < c, ta xét 3 trường hợp như sau :
TH1: Nếu a = 2; b =3; c = 5 thì a2 + b2 + c2 = 38 ( không phải số nguyên tố ) (1)
TH2: Nếu a = 3; b = 5; c = 7 thì a2 + b2 + c2 = 83 ( thỏa mãn yêu cầu của đề bài ) ( 2)
TH3: Nếu a,b,c > 3 => a,b,c không chia hết đc cho 3
=> a2 = 1(mod3); b2 = 1(mod3); c2 = 1(mod3) => a2 + b2 + c2 = 3(mod3) a2 + b2 + c2 chia hết cho 3 (3)
=> Kết luận: Từ (1);(2);(3) ta có thể suy ra chỉ có duy nhất là 3 số là ta cần tìm - thỏa mãn yêu cầu của đề bài là: 3,5 và 7 .
Ta thấy rằng: a,b,c cùng chẵn => chẵn (chọn)
a,b,c cùng lẻ => lẻ (loại)
trong a,b,c có một số lẻ, hai số chẵn => lẻ (loại)
trong a,b,c có hai số lẻ, một số chẵn => chẵn (chọn)
Nhưng với trường hợp a,b,c cùng chẵn không thỏa mãn vì \(2^2+2^2+2^2=12\ne3494\)
Nên ta chỉ còn trường hợp trong a,b,c có hai lẻ, một chẵn
Giả sử số chẵn trong ba số đó là c thì \(c=2\Rightarrow a^2+b^2=3490\)
Vì các số chính phương chia cho 3 dư 0 hoặc 1 mà 3490 chia 3 dư 1 nên một trong hai số a,b phải chia hết cho 3. Giả sử số đó là b thì \(b=3\)
\(\Rightarrow a^2=3481\Rightarrow a=59\left(tm\right)\)
Vậy \(\left(a;b;c\right)=\left(59;3;2\right)\)và các hoán vị của bộ số này
Tìm a,b,c là các số nguyên tố thỏa mãn ab +1 = c
Nếu a = 2; b = 2 => c = 22 + 1 = 5 (Chọn)
Nếu a > 3 thì ab lẻ => ab + 1 là số chẵn => c chẵn Mà c là số nguyên tố => không có số nguyên tố thỏa mãn
Vậy a = b = 2 ; c = 5
Ta có:ab+1=c
=>ab=c-1
*Xét c=2
=>ab=2-1=1=>ab=1
Vì a>1,b>1
=>ab>11=1
=>11>1
=>1>1
=>Vô lí
*Xét c>2
=>c là số lẻ
=>c-1 là số chẵn
=>ab là số chẵn
=>a là số chẵn
=>a=2
=>2b+1=c
Với b=2=>c=22+1=4+1=5
Với b>2
=>b lẻ
=>2b:3(dư 2)
=>2b+1 chia hết cho 3
=>c chia hết cho 3
=>c=3
=>2b=3-1=2
=>b=1
=>Vô lí
Vậy a=2,b=2,c=5
Câu 1: Khi chia 3698 và 736 cho cùng 1 số bé hơn 100 thì ta sẽ được số dư tương ứng là 26 và 56. Tìm số chia.
Câu 2: Tìm 3 số nguyên tố a, b, c thỏa mãn 2a + 3b + 6c = 78.
Câu 3: 3 tấm vải có tổng chiều dài là 126m. Tấm 1 dài gấp 2 lần tấm vải thứ 3 và ngắn hơn tấm vải thứ hai 6m. Tìm độ dài 3 tấm vải.
Câu 4: Tìm các số tự nhiên a, b nguyên tố cùng nhau thỏa mãn a + 7b/a + 5b = 29/28.
Câu 5: Tìm số có 2 chữ số ab biết ab bằng 6 lần tích các chữ số của nó ( ab là 1 số tự nhiên ).
Tìm tất cả các số nguyên tố a, b, c (có thể bằng nhau) thỏa mãn tính chất a(a+1) + b(b+1) = c(c+1).
Tìm các số nguyên dương a,b,c thỏa mãn 3a² + b² + c² là nghiệm nguyên tố của 27a⁴ + b⁴ + c⁴ +b²c².
1.Cho 3 số tự nhiên a,b,c đôi một khác nhau thỏa mãn a+b+c=0
tính A=ab/(a^2+b^2-c^2)+bc/(b^2+c^2-a^2)+ac/(a^2+c^2-b^2)
2.Tìm 3 số nguyên tố liên tiếp a,b,c để a^2+b^2+c^2 nguyên tố
3.Cho x,y,z đôi một khác nhau
cmr: M-1/(x-y)^2+1/(y-z)^2+1/(z-x)^2 là binhg phuiwng 1 số hữu tỉ
4.Cho A=(x^2+x+2)/(x^3-1)
Tìm x nguyên để A nguyên
5.Tìm x,y thỏa mãn (X^2+1)(x^2+y^2)=4x^2y
Giúp mk nha các bạn