Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Shii
Xem chi tiết
Nguyễn Đức Trí
29 tháng 8 2023 lúc 13:44

\(A=\dfrac{2024x2022-4048}{2020x2024+4040}\)

\(A=\dfrac{2024x2022-2x2024}{2020x2024+2x2020}\)

\(A=\dfrac{2024x\left(2022-2\right)}{2020x\left(2024+2\right)}\)

\(A=\dfrac{2024x2020}{2020x2026}\)

\(A=\dfrac{2024}{2026}\)

\(A=\dfrac{1012}{1013}\)

Đào Trí Bình
29 tháng 8 2023 lúc 14:56

A = 1012/1013

Tú Anh Ngọc
Xem chi tiết
Nguyen Trong Nhan
3 tháng 5 2018 lúc 14:34

2020+2022/2022+2024 lớn hơn

Tú Anh Ngọc
3 tháng 5 2018 lúc 14:35

lm sao hở c ?

nguyen thi ngoc han
3 tháng 5 2018 lúc 14:42

2020/2022 > 2020/2022+2024     (1)

2022/2024 > 2022/2022+2024      (2)

từ (1) và (2) cộng vế theo vế ta có :

2020/2022 + 2022/2024 > 2020/2022+2024 + 2022/2022+2024

=> 2020/2022 + 2022/2024 > 2020+2022/2022+2024

Hoàng Minh Quang
Xem chi tiết

Câu này  cô làm rồi em nhá, em xem phần câu hỏi của tôi ý

Hoàng Minh Quang
Xem chi tiết

Q = \(\dfrac{1+x^4+x^8+...+x^{2020}}{1+x^2+...+x^{2022}}\)

Đặt A = 1 + \(x^4\) + \(x^8\) +...+ \(x^{2020}\)

Đặt B = 1 + \(x^2\) + ...+ \(x^{2022}\)

Thì Q = \(\dfrac{A}{B}\) 

A              = 1 + \(x^4\) + \(x^8\) + ...+ \(x^{2020}\)

A.\(x^4\)         =       \(x^4\) + \(x^8\) +....+ \(x^{2020}\) + \(x^{2024}\)

A.\(x^4\) - A    = \(x^{2024}\) - 1

A              = \(\dfrac{x^{2024}-1}{x^4-1}\) 

B             = 1 + \(x^2\) + \(x^4\) +...+ \(x^{2020}\) + \(x^{2022}\) 

B.\(x^2\)        =       \(x^2\) + \(x^4\) +...+ \(x^{2020}\) + \(x^{2022}\) + \(x^{2024}\)

B\(x^2\) - B   =       \(x^{2024}\) - 1

B             = \(\dfrac{x^{2024}-1}{x^2-1}\)

Q = \(\dfrac{\dfrac{x^{2024}-1}{x^4-1}}{\dfrac{x^{2024}-1}{x^2-1}}\)

Q  = \(\dfrac{x^{2024}-1}{x^4-1}\) \(\times\)\(\dfrac{x^2-1}{x^{2024}-1}\)

Q  = \(\dfrac{1}{x^2+1}\)

 

Đặng Kim Cương
Xem chi tiết
Vui lòng để tên hiển thị
21 tháng 7 2023 lúc 9:09

`a, A = 3020 xx 3110 - 5 = 3020 xx 3109 + 3020 - 5`

`= 3020 xx 3109 + 3015 = B`.

`b, B = (2022-2)(2022+2) = 2022^2-4 < 2022^2 = A.`

Vũ Thị Nhàn
Xem chi tiết
Akai Haruma
29 tháng 12 2023 lúc 22:48

Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-2020|+|x-2024|=|x-2020|+|2024-x|\geq |x-2020+2024-x|=4$

$|x-2022|\geq 0$ (theo tính chất trị tuyệt đối)

$\Rightarrow |x-2020|+|x-2024|+|x-2022|\geq 4+0=4$

$\Rightarrow P\geq 4$

Vậy $P_{\min}=4$. Giá trị này đạt được khi $(x-2020)(2024-x)\geq 0$ và $x-2022=0$

Hay $x=2022$

Nguyễn Anh Thư
Xem chi tiết
toulin
Xem chi tiết
Nguyễn Đăng Nhân
30 tháng 9 2023 lúc 19:49

\(S=1+3^2+3^4+...+3^{2022}\)

\(3^2S=9S=3^2+3^4+3^6+...+3^{2024}\)

\(S=\dfrac{9S-S}{8}=\left(3^{2024}-1\right):8\)

d, không đáp án nào đúng

Akai Haruma
30 tháng 9 2023 lúc 20:02

Lời giải:

$S=1+3^2+3^4+....+3^{2022}$

$9S=3^2S=3^2+3^4+3^6+...+3^{2024}$

$\Rightarrow 9S-S=3^{2024}-1$

$\Rightarrow S=\frac{3^{2024}-1}{8}$

Đáp án D.

Nàng Bạch Dương
Xem chi tiết
Xyz OLM
29 tháng 4 2023 lúc 11:44

Với x = 2023 

<=> x + 1 = 2024

Khi đó P(2023) = x2023 - (x + 1).x2022 + ... + (x + 1).x - 1

= x2023 - x2023 - x2022 + .. + x2 + x - 1

= x - 1 = 2023 - 1 = 2022

Nguyễn Việt Bách
Xem chi tiết