phân tích 9x^2+12-5
Phân tích thành nhân tử ( bằng kĩ thuật bổ sung hằng đẳng thức ):
a. x^2 + x - 12
b.x^2 - x -12
c.x^2 - 9x + 20
d. x^2 +9x +20
a) x2 + x - 12 = x2 - 3x + 4x - 12 = x(x - 3) + 4(x - 3) = (x - 3)(x + 4)
b) x2 - x - 12 = x2 + 3x - 4x - 12 = x(x + 3) - 4(x + 3) = (x + 3)(x - 4)
c) x2 - 9x + 20 = x2 - 4x - 5x + 20 = x(x - 4) - 5(x - 4) = (x - 4)(x - 5)
d) x2 + 9x + 20 = x2 + 4x + 5x + 20 = x(x + 4) + 5(x + 4) = (x + 4)(x + 5)
a,x^2+x-12=x^2-3x+4x-12
=x(x-3)+4(x-3)
=(x-3)*(x+4)
b) x2 - x - 12 = x2 + 3x - 4x - 12 = x(x + 3) - 4(x + 3) = (x + 3)(x - 4)
Phân tích nhân tử x^3 + 8x^2 + 9x +12
phân tích đa thức thành nhân tử
\(\frac{12}{5}x^2y^2-9x^4-\frac{4}{25}y^4\)
\(\frac{12}{5}x^2y^2-9x^4-\frac{4}{25}y^4\)
\(=-\left(\frac{4}{25}y^4-\frac{12}{5}x^2y^2+9x^4\right)\)
\(=-\left[\left(\frac{2}{5}y^2\right)^2-2\cdot\frac{2}{5}y^2\cdot3x^2+\left(3x^2\right)^2\right]\)
\(=-\left(\frac{2}{5}y^2-3x^2\right)^2\)
\(\frac{12}{5}x^2y^2-9x^4-\frac{4}{25}y^4\)
\(=-\left(9x^4-\frac{12}{5}x^2y^2+\frac{4}{25}y^4\right)\)
\(=-\left[\left(3x\right)^2-2.3x^2.\frac{2}{5}y^2+\left(\frac{2}{5}y^2\right)^2\right]\)
\(=-\left(3x^2+\frac{2}{5}y^2\right)\)
Phân tích đa thức thành nhân tử:
+)5x2y2+15x2+30xy2
+)(x-2)(x-3)+4-x2
+)x2-7x+12
+)x3-2x2y+xy2-9x
+)x2-25+y2+2xy
+)x2-x-12
+)5x25xy-x-y
+)12y(2x-5)+6xy(5-2x)
+)16x2+24x-8xy-6y+y2
+)(x+3)(x+6)(x+9)(x+12)+81
a: \(=5x\left(xy^2+3x+6y^2\right)\)
b: \(=\left(x-2\right)\left(x+3\right)-\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(x+3-x-2\right)=\left(x-2\right)\)
c: \(=\left(x-3\right)\left(x-4\right)\)
d: \(=x\left(x^2-2xy+y^2-9\right)\)
=x(x-y-3)(x-y+3)
e: \(=\left(x+y\right)^2-25=\left(x+y+5\right)\left(x+y-5\right)\)
f: \(=\left(x-4\right)\left(x+3\right)\)
Phân tích các đa thức sau thành nhân tử
1) x^3+2x-3
2) x^3-6x+4
3) x^3-2x^2+1
4)x^3+5x^2-12
5) x^3-6x+9x
6) 4x^3-9x^2+5x
1) \(x^3+2x-3\)
\(=\left(x^3-x^2\right)+\left(x^2-x\right)+\left(3x-3\right)\)
\(=x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+3\right)\)
2) \(x^3-6x+4\)
\(=\left(x^3-2x^2\right)+\left(2x^2-4x\right)-\left(2x-4\right)\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)-2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x-2\right)\)
3) \(x^3-2x^2+1\)
\(=\left(x^3-x^2\right)-\left(x^2-x\right)-\left(x-1\right)\)
\(=x^2\left(x-1\right)-x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-x-1\right)\)
4) \(x^3+5x^2-12\)
\(=\left(x^3+2x^2\right)+\left(3x^2+6x\right)-\left(6x+12\right)\)
\(=x^2\left(x+2\right)+3x\left(x+2\right)-6\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+3x-6\right)\)
5) \(x^3-6x^2+9x\) (chắc đề như vậy)
\(=x\left(x^2-6x+9\right)\)
\(=x\left(x-3\right)^2\)
6) \(4x^3-9x^2+5x\)
\(=x\left(4x^2-9x+5\right)\)
\(=x\left[\left(4x^2-4x\right)-\left(5x-5\right)\right]\)
\(=x\left[4x\left(x-1\right)-5\left(x-1\right)\right]\)
\(=x\left(x-1\right)\left(4x-5\right)\)
Phân tích đa thức thành nhân tử
(4x + 1)(12x - 1)(3x + 2)(x+1) = 4
4( x+5) ( x+6) (x+10) ( x+12) -3x^2
( x^2+2x)^2 + 9x^2 + 18x + 20
Phân tích đa thức thành nhân tử
(4x + 1)(12x - 1)(3x + 2)(x+1) = 4
4( x+5) ( x+6) (x+10) ( x+12) -3x^2
( x^2+2x)^2 + 9x^2 + 18x + 20
Phân tích các đt sau thành nhân tử
1)(x^2+x)^2+4(x^2+x)-12
2)(x^2+x)^2+9x^2+9x+14
3)(x^2+5x)^2+10x^2+50x+24
1/ Đặt x2+x=t
=>(x2+x)2+4(x2+x)-12=t2+4t-12=t2+6t-2t-12=t(t+6)-2(t+6)=(t-2)(t+6)=(x2+x-2)(x2+x+6)=(x2-x+2x-2)(x2+x+6)
=[x(x-1)+2(x-1)](x2+x+6)=(x-1)(x+2)(x2+x+6)
2/ Đặt x2+x=t
=>(x2+x)2+9x2+9x+14=(x2+x)2+9(x2+x)+14=t2+9t+14=t2+2t+7t+14=t(t+2)+7(t+2)=(t+2)(t+7)=(x2+x+2)(x2+x+7)
3/ Đặt x2+5x=t
=>(x2+5x)2+10x2+50x+24=(x2+5x)2+10(x2+5x)+24=t2+10t+24=t2+4t+6t+24=t(t+4)+6(t+4)=(t+4)(t+6)=(x2+5x+4)(x2+5x+6)
=(x2+x+4x+4)(x2+2x+3x+6)=[x(x+1)+4(x+1][x(x+2)+3(x+2)]=(x+1)(x+4)(x+2)(x+3)=(x+1)(x+2)(x+3)(x+4)
Phân tích đa thức sau thành nhân tử:
9x^2-9y^2-6x+1
Tìm x
a)4x^2(x-2016)-x+2016=0
b)x^2-5x+6=12
Bài 1:
\(=\left(3x-1\right)^2-9y^2\)
=(3x-1-3y)(3x-1+3y)
=(3x−1)2−9y2=(3x−1)2−9y2
=(3x-1-3y)(3x-1+3y)
Tham khảo ạ
Bài 1 :
=(3x−1)2−9y2=(3x−1)2−9y2
=(3x-1-3y)(3x-1+3y)
HT
Phân tích đa thức thành nhân tử
x^3+9x^2+27x+27
3\(\sqrt{3x^3}\)+18x^2+12\(\sqrt{3x}\)+8
\(\dfrac{1}{4}\)-x^2
a) \(x^3+9x^2+27x+27=\left(x+3\right)^3\)
b) \(3\sqrt{3x^3}+18x^2+12\sqrt{3x}+8=\left(\sqrt{3x}+2\right)^3\)
c) \(\dfrac{1}{4}-x^2=\left(\dfrac{1}{2}-x\right)\left(\dfrac{1}{2}+x\right)\)