Tim cac cap so thuc (x,y) sao cho x va y thoa man dong thoi 2 dieu kien:x=x2+y2 va y=2xy
1) Tim x biet :
a) \(\frac{2}{3}x-70\frac{10}{11}:\left(\frac{131313}{151515}+\frac{131313}{353535}+\frac{131313}{636363}+\frac{131313}{999999}\right)=-5\)
2) a) Tim cac cap so thuc (x,y) sao cho x,y thoa man dong thoi 2 dieu kien sau:
x=\(x^2+y^2\)va \(y=2xy\)
Tim hai so huu ti x va y sao cho cac phan so dai dien co mau la 13, cac tu so la hai so nguyen le lien tiep thoa man dieu kien:x<4/5<y
ve 2 duong thang x , y va cac diem A,B,M,N thoa man dong thoi cac dieu kien : A thuoc x , y ;B thuoc x va ko thuoc y ; M thuoc y va ko thuoc x ; N kothuoc x , y
bn ko viết dấu ra à?
hễ trả lời thì nhắn tin cho mik nha!
Thế bạn ko biết dịch ra à . Cứ tưởng ai trả lời . Ai ngờ lại đi hỏi mấy câu ngớ ngẩn !
cho x,y la cac so duong thay doi va thoa man dieu kien x+y\(\le\)1. tim gia tri nho nhat cua bieu thuc M=\(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)
à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha
tim cac cap so nguyen(x;y) thoa man; x^2+6xy=18 va x-2y=-7/2*y
Cho 3 so x, y, z thoa man cac he thuc: \(\left(z-1\right)x-y=1\) va \(x+zy=2\)
Chmr: \(\left(2x-y\right)\left(z^2-z+1\right)=7\) va tim tat ca cac so nguyen x, y, z thoa man cac he thuc tren.
Tim cac cap so nguyen x,y thoa man
a) xy-5x+y=17
b) x.(y-2)=3 va x>y
a) \(xy-5x+y=17\)
\(\Leftrightarrow x\left(y-5\right)+y-5=12\)
\(\Leftrightarrow\left(x+1\right)\left(y-5\right)=12\)
\(\Leftrightarrow\left(x+1\right)\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Ta có bảng sau :
\(x+1\) | \(-12\) | \(-6\) | \(-4\) | \(-3\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(12\) |
\(x\) | \(-13\) | \(-7\) | \(-5\) | \(-4\) | \(-3\) | \(-2\) | \(0\) | \(1\) | \(2\) | \(3\) | \(5\) | \(11\) |
b) \(x\left(y-2\right)=3\)
\(\Leftrightarrow x\left(y-2\right)=3.1=-1.\left(-3\right)\)
*Trường hợp 1: \(x=3\)
\(\Leftrightarrow y-2=1\)
\(\Leftrightarrow y=1+2\)
\(\Leftrightarrow y=3\)
*Trường hợp 1: \(x=-1\)
\(\Leftrightarrow y-2=-3\)
\(\Leftrightarrow y=-3+2\)
\(\Leftrightarrow y=-2\)
\(\Rightarrow x=-1;y=-2\)
\(xy-5x+y=17\)
\(\Rightarrow x\left(y-5\right)+\left(y-5\right)=17-5\)
\(\Rightarrow\left(x+1\right)\left(y-5\right)=12\)
\(\Rightarrow\left(x+1\right)\left(y-5\right)\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Ta có các trường hợp
\(TH1:\hept{\begin{cases}x+1=1\\y-5=12\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=17\end{cases}}}\)
\(TH2:\hept{\begin{cases}x+1=-1\\y-5=-12\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-7\end{cases}}}\)
\(TH3:\hept{\begin{cases}x+1=2\\y-5=6\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=11\end{cases}}}\)
\(TH4:\hept{\begin{cases}x+1=-2\\y-5=-6\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}}\)
\(TH5:\hept{\begin{cases}x+1=3\\y-5=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=9\end{cases}}}\)
\(TH6:\hept{\begin{cases}x+1=-3\\y-5=-4\end{cases}\Leftrightarrow\hept{\begin{cases}x=-4\\y=1\end{cases}}}\)
\(TH7:\hept{\begin{cases}x+1=12\\y-5=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=11\\y=6\end{cases}}}\)
\(TH8:\hept{\begin{cases}x+1=-12\\y-5=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-13\\y=4\end{cases}}}\)
\(TH9:\hept{\begin{cases}x+1=6\\y-5=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=7\end{cases}}}\)
\(TH10:\hept{\begin{cases}x+1=-6\\y-5=-2\end{cases}\Leftrightarrow\hept{\begin{cases}x=-7\\y=-3\end{cases}}}\)
\(TH11:\hept{\begin{cases}x+1=4\\y-5=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=8\end{cases}}}\)
\(TH12:\hept{\begin{cases}x+1=-4\\y-5=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=2\end{cases}}}\)
Vậy.......................................
\(x\left(y-2\right)=3\)
\(\Rightarrow x;\left(y-2\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta có các trường hợp sau:
\(TH1:\hept{\begin{cases}x=1\\y-2=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=5\end{cases}\left(loại\right)}}\)
\(TH2:\hept{\begin{cases}x=-1\\y-2=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y-1\end{cases}\left(loại\right)}}\)
\(TH3:\hept{\begin{cases}x=3\\y-2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\left(loại\right)}\)
\(TH4:\hept{\begin{cases}x=-3\\y-2=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}\left(loại\right)}}\)
Vậy.............................
p/s: câu b chưa chắc chắn nha
1. Tim cac chu so x va Y
x + 3 = y ( y - 2)
2 . cho cac chu so ab tu nhien thoa man 3a+ 2b :17
C/M 10a + b : 17 Dieu nguoc lai co dung khong
Cau 1; cho\(\frac{x}{2}=\frac{y}{5}\)vaxy=90. So cap (x;y) thoa man la
Cau 2 : Cho a+d=b+c va \(a^2+d^2=b^2+c^2\)(b,d khac 0).Khi do 4 so lap thanh ti le thuc nao
Cau 3 :GTLN cua phan so \(\frac{7n-8}{2n-3}\)
Cau 4: Cho A=\(\frac{12}{x-15}\) dieu kien de 0<A<1 va A>1
Cau 5 ; tim x biet /-x-5//x=5=10
Cau 6: tap hop cac so nguyen cua x thoa man (3x^2-51)^2014=(-24)^2014
Cau 7: tap hop cac so thoa man /x-y/+/y+9/25/=0