Cho hàm số \(f\left(x\right)=ã+b\left(a\ne0\right)\)
Hàm số trên đồng biến hay nghịch biến
cho hàm số bậc nhất y=F(x)=\(\left(\sqrt{3}-1\right)\) X+1
a) hàm số trên là đồng biến hay nghịch biến trên R
b)tính các giá trị F(0);F\(\left(\sqrt{3}+1\right)\)
Lời giải:
a. Vì $\sqrt{3}-1>0$ nên hàm trên là hàm đồng biến trên $\mathbb{R}$
b.
$F(0)=(\sqrt{3}-1).0+1=1$
$F(\sqrt{3}+1)=(\sqrt{3}-1)(\sqrt{3}+1)+1=(3-1)+1=3$
(3) cho hàm số: \(y=x+3\) \(\left(d_1\right)\)
a) hàm số đồng biến hay nghịch biến trên R. vẽ đồ thị hàm số
b) xác định hệ số a và b của hàm số \(y=ãx+b\) \(\left(d_2\right)\), biết rằng đường thẳng \(\left(d_2\right)\) song song vs đường thẳng \(\left(d_1\right)\) và đường thẳng \(\left(d_2\right)\) cắt trục hoành tại điểm có hoành độ bằng 2
giúp mk vs ạ mai mk hc rồi
a, Vì \(a=1>0\) nên đths đồng biến trên R
b, Vì (d1)//(d2) nên \(\left\{{}\begin{matrix}a=1\\b\ne3\end{matrix}\right.\)
Vì (d2) cắt trục hoành tại hoành độ 2 nên \(y=0;x=2\)
\(\Leftrightarrow0=2a+b=2+b\Leftrightarrow b=-2\left(tm\right)\)
Vậy đths là \(\left(d_2\right):y=x-2\)
Vẽ đồ thị của các hàm số \(y=3x+1\) và \(y=-2x^2\). Hãy cho biết:
a) Hàm số \(y=3x+1\) đồng biến hay nghịch biến trên R.
b) Hàm số \(y=-2x^2\) đồng biến hay nghịch biến trên mỗi khoảng: \(\left(-\infty;0\right)\) và \(\left(0;+\infty\right)\)
Vẽ đồ thị \(y = 3x + 1;y = - 2{x^2}\)
a) Trên \(\mathbb{R}\), đồ thị \(y = 3x + 1\) đi lên từ trái sang phải, như vậy hàm số \(y = 3x + 1\) đồng biến trên \(\mathbb{R}\)
b) Trên khoảng \(\left( { - \infty ;0} \right)\), đồ thị \(y = - 2{x^2}\)đi lên từ trái sang phải với mọi \(x \in \left( { - \infty ;0} \right)\) , như vậy hàm số đồng biến trên \(\left( { - \infty ;0} \right)\)
Trên khoảng \(\left( {0; + \infty } \right)\), đồ thị \(y = - 2{x^2}\)đi xuống từ trái sang phải với mọi \(x \in \left( {0; + \infty } \right)\) , như vậy hàm số nghịch biến trên \(\left( {0; + \infty } \right)\)
Hàm số \(y = \cos x\) đồng biến hay nghịch biến trên khoảng \(\left( { - 2\pi ; - \pi } \right)\)
Hàm số \(y = \cos x\)đồng biến trên mỗi khoảng \(\left( { - \pi + k2\pi ;k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {k2\pi ;\pi + k2\pi } \right)\) với \(k \in Z\)
Do \(\left( { - 2\pi ; - \pi } \right) = \left( { - 2\pi ;\pi - 2\pi } \right)\) nên hàm số \(y = \cos x\) nghịch biến trên khoảng \(\left( { - 2\pi ; - \pi } \right)\)
Cho hàm số \(f\left(x\right)=\sqrt{3x-4}\) . Hàm số đồng biến hay nghịch biến trên \(\left(\frac{4}{3};+\infty\right)\)
500x600000000000000000000:9870x12345976666=???
Cho hàm số \(y=f\left(x\right)=\left(m^2-4\right)-\left(m+2\right)x-3\)
Tìm m để hàm số đã cho là hàm số bậc nhất. Khi đó hàm số đồng biến hay nghịch biến ?
m=2. Khi đó hàm số trở thành: f(x)= -4x-3
Khi đó hàm f(x) luôn nghịch biến vì hệ số a=-4<0
Cho hàm số: \(y=f\left(x\right)=\left(m-1\right)\left(m+2\right)x^2-3mx-4\)
a) Với giá trị nào của m thì hàm số trên là hàm số bậc nhất?
b) Với những giá trị m mà hàm số là bậc nhất thì nó đồng biến, nghịch biến?
Cho hàm số \(y = f\left( x \right)\) có đồ thị như Hình 9. Chỉ ra khoảng đồng biến và khoảng nghịch biến của hàm số \(y = f\left( x \right)\).
Từ đồ thị hàm số ta thấy khi x tăng từ -3 đến -1 và từ -1 đến 0 thì đồ thị đi lên nên hàm số đồng biến trên các khoảng (-3;-1) và (-1;0).
Khi x tăng từ 0 đến 2 thì đồ thị đi xuống nên hàm số nghịch biến trên (0;2).
Cho hàm số \(y=ax+b\left(a\ne0\right)\)
a) Khi nào thì hàm số đồng biến ?
b) Khi nào thì hàm số nghịch biến ?
a) Hàm số đồng biến khi a > 0
b) Hàm số nghịch biến khi a < 0