Phân tích đa thức sau thành nhân tử
x2-4x+3
Phân tích đa thức sau thành nhân tử : (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8\right)^2+2x\left(x^2+4x+8\right)+x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)\left(x^2+4x+8+2x\right)+x\left(x^2+4x+8+2x\right)\)
\(=\left(x^2+4x+8\right)\left(x^2+6x+8\right)+x\left(x^2+6x+8\right)\)
\(=\left(x^2+4x+8+x\right)\left(x^2+6x+8\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)
Phân tích đa thức sau thành nhân tử: `2x^2 + 2y^2 - 4x - 18`
Đa thức này không phân tích được nhé bạn
Phân tích đa thức thành nhân tử :
3x6 – 4x5 + 2x4 – 8x3 + 2x2 – 4x + 3
\(3x^6-4x^5+2x^4-8x^3+2x^2-4x+3\)
\(=3x^6+3x^4-4x^5-4x^3-x^4-x^2-4x^3-4x+3x^2+3\)
\(=\left(x^2+1\right)\left(3x^4-4x^3-x^2-4x+3\right)\)
\(=\left(x^2+1\right)\left(x^2+x+1\right)\left(3x^2-7x+3\right)\)
Phân tích đa thức thành nhân tử : 4x^2 - 9y^2 + 4x - 6y
\(4x^2-9y^2+4x-6y=\left(4x^2-9y^2\right)+\left(4x-6y\right)=\left(2x-3y\right)\left(2x+3y\right)+2\left(2x-3y\right)=\left(2x-3y\right)\left(2x+3y+2\right)\)
\(4x^2-9y^2+4x-6y\)
\(=\left(2x-3y\right)\left(2x+3y\right)+2\left(2x-3y\right)\)
\(=\left(2x-3y\right)\left(2x+3y+2\right)\)
phân tích đa thức thành nhân tử :
x^3 - 3x^2 - 4x +12
\(x^3-3x^2-4x+12\)
\(=x^2\left(x-3\right)-\left(4x-12\right)\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x^2-4\right)\left(x-3\right)\)
\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
\(x^3-3x^2-4x+12\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x^2-4\right)\left(x-3\right)\)
\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
phân tích đa thức thành nhân tử
(x^2+4x-3)^2-5x.(x^2+4x-3)+6x^2
\(=\left(x^2+4x-3\right)^2-5\left(x^2+4x-3\right)+6x^2\)
\(=x^4+16x^2+9+8x^3-24x-6x^2-5x^2-20x+15+6x^2\)
\(=x^4+8x^3+11x^2-44x+24\)
\(=\left(x^4-x^3\right)+\left(9x^3-9x^2\right)+\left(20x^2-20x\right)-\left(24x-24\right)\)
\(=x^3\left(x-1\right)+9x^2\left(x-1\right)+20x\left(x-1\right)-24\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+9x^2+20x-24\right)\)
Phân tích đa thức thành nhân tử : (x2 + x)2 + 4x2 + 4x – 12
\(\left(x^2+x\right)^2+4x^2+4x-12=\left[\left(x^2+x\right)^2+4\left(x^2+x\right)+4\right]-16=\left(x^2+x+2\right)-4^2=\left(x^2+x+2-4\right)\left(x^2+x+2+4\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
\(\left(x^2+x\right)^2+4x^2+4x-12\\ =\left(x^2+x+2\right)-4\\ =\left(x^2+x-2\right)\left(x^2+x+6\right)\)
\(\left(x^2+x\right)^2+4x^2+4x-12\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)
Phân tích đa thức thành nhân tử : (1 + x2)2 – 4x(1 – x2)
(1 + x2)2 - 4x(1 - x2)
= (1 + x2)(1 + x2) - 4x(1 - x2)
= (1 + x2 - 4x)(1 + x2 - 1 + x2)
= 2x2(x2 - 4x + 1)
Ta có: \(\left(x^2+1\right)^2+4x\left(x^2-1\right)\)
\(=x^4+2x^2+1+4x^3-4x\)
\(=x^4+2x^3+2x^3+4x^2-2x^2-4x+1\)
\(=\left(x+2\right)\left(x^3+2x^2-2x\right)+1\)
Phân tích đa thức sau thành nhân tử : xn + 3 + xn
\(x^{n+3}+x^n=x^n.x^3+x^n=x^n\left(x^3+1\right)=x^n\left(x+1\right)\left(x^2-x+1\right)\)
\(x^{n+3}+x^n=x^n\left(x^3+1\right)=x^n\left(x+1\right)\left(x^2-x+1\right)\)
\(x^{n+3}+x^n=x^n\left(x^3+1\right)=x^n\cdot\left(x+1\right)\left(x^2-x+1\right)\)