Chứng minh rằng với mọi số nguyên dương n thì : n5-n chia hết cho 5
chứng minh rằng với mọi số nguyên dương n thì n5 - n chia hết cho 5
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Do \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5 và \(5n\left(n-1\right)\left(n+1\right)⋮5\forall n\in Z^+\)
\(\Rightarrow n^5-n⋮5\forall n\in Z^+\)
Đặt P = n5 - 5n3 + 4n
= n5 - n3 - 4n3 + 4n
= n3(n2 - 1) - 4n(n2 - 1)
= n3(n - 1)(n + 1) - 4n(n - 1)(n + 1)
= (n - 1)n(n + 1)(n2 - 4)
= (n - 2)(n - 1)n(n + 1)(n + 2) (tích 5 số nguyên liên tiếp)
=> P \(⋮3;5;8\)
mà (3;5;8) = 1
=> P \(⋮3.5.8=120\)
chứng minh rằng với mọi số nguyên dương n thì 5^n - 1 không chia hết cho 4^n -1
Với mỗi số nguyên dương n, gọi u n = 9 n - 1 . Chứng minh rằng với mọi số nguyên dương n thì un luôn chia hết cho 8.
* Ta có u 1 = 9 1 − 1 = 8 chia hết cho 8 (đúng với n = 1).
* Giả sử u k = 9 k − 1 chia hết cho 8.
Ta cần chứng minh u k + 1 = 9 k + 1 − 1 chia hết cho 8.
Thật vậy, ta có u k + 1 = 9 k + 1 − 1 = 9.9 k − 1 = 9 9 k − 1 + 8 = 9 u k + 8 .
Vì 9 u k và 8 đều chia hết cho 8, nên u k + 1 cũng chia hết cho 8.
Vậy với mọi số nguyên dương n thì u n chia hết cho 8.
Chứng minh rằng: Với mọi số nguyên dương n thì : chia hết cho 10
Bạn ghi lại biểu thức đi bạn
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=\left(3^n\cdot9+3^n\right)-\left(4\cdot2^n+2^n\right)\)
\(=10\cdot3^n-5\cdot2^n\)
\(=10\cdot3^n-10\cdot2^{n-1}=10\left(3^n-2^{n-1}\right)⋮10\)
Chứng minh rằng với mọi số nguyên dương n thì n5-n chia hết cho 5
giúp mk với mai nộp rồi
\(n^5-n\)
\(=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n^2-1\right)\left(n^2-4+5\right)\)
\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n^2-1\right)\)
Ta có số hạng đầu tiên là tích 5 số nguyên liên tiếp nên chia hểt cho 5, số hạng thứ 2 chia hết cho 5
Vậy \(n^5-n⋮5\)
Chứng minh rằng:
\(6^n\)\(.5\) chia hết cho 10 với mọi số nguyên dương n
Có: $6^n\cdot5=(2\cdot3)^n\cdot5=2^n\cdot3^n\cdot5$
$=(2\cdot5)\cdot2^{n-1}\cdot3^n=10\cdot2^{n-1}\cdot3^n$
Với $n$ nguyên dương $\Rightarrow n-1\ge 0$
Khi đó: $10\cdot2^{n-1}\cdot3^n\vdots10$
hay $6^n\cdot5\vdots10$ với $n$ nguyên dương.
Chứng minh rằng với mọi số nguyên dương n thì (5n+15)(n+6) chia hết cho 10
Vì số n là số nguyên dương\(\Rightarrow\) n=2k hoacn=2k+1 (k\(\in\)N*)
Với n=2k \(\Rightarrow\) (5n+15)(n+6)=(10k+15)(2k+6)
=10x2k2+10x6k+30k+80
=10x2k2+10x6k+10x3k+10x8
=10(2k2+6k+3k+8) chia hết cho 10
Với n=2k+1 \(\Rightarrow\) (5n+15)(n+6)=[10(k+1)+15](2k+1+6)
=(10k+10+15)(2k+7)
=10x2kk+10x7k+10x2k+10x7+30k+105
=10(2kk+7k+2k+7+2k)+105
Vì 10(2kk+7k+2k+7+2k) chia hết cho 10 mà 2x105 chia hết cho 10
 \(\Rightarrow\) 105 chia hết cho 10
Vậy n là số nguyên dương thì (5n+15)(n+6) chia hết cho 10
Chứng minh rằng với mọi số nguyên dương n thì:
\(3^{n+2} - 2 ^{n+2} + 3 ^{n} - 2^{n}\) chia hết cho 10
3n+2 -2n+2 +3n -2n
=3n .32 -2n .22 +3n -22
=3n(9+)-2n(4-1)
Vì 3n .10 ⋮10
=> 3n .10- 2n .3⋮10
=>3n +2 -2n+2 +3n -2n ⋮10