Cho : 2a+b/a-2b=2c+d/c-2d
Chứng minh a/b=c/d
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\left(b,d\ne0\right)\).Chứng minh rằng
\(\dfrac{2a+b}{2a-b}=\dfrac{2c+d}{2c-d}\)
\(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{2a+b}{2a-b}=\dfrac{2bk+b}{2bk-b}=\dfrac{2k+1}{2k-1}\)
\(\dfrac{2c+d}{2c-d}=\dfrac{2dk+d}{2dk-d}=\dfrac{2k+1}{2k-1}\)
=>\(\dfrac{2a+b}{2a-b}=\dfrac{2c+d}{2c-d}\)
b: \(\dfrac{2a+b}{a-2b}=\dfrac{2bk+b}{bk-2b}=\dfrac{2k+1}{k-2}\)
\(\dfrac{2c+d}{c-2d}=\dfrac{2dk+d}{dk-2d}=\dfrac{2k+1}{k-2}\)
=>\(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)
Cho a/b = c/d Chứng minh rằng : a+2b/2a-b = c+ 2b/ 2c-b
cho 2a+b/a-2b = 2c+d/c-2d chung minh a/b = c/d
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
Cho 2a + b + c + d/a = a + 2b + c + d/b = a + b+ 2c + d/c = a + b + c + 2d. Chứng minh rằng a = b = c
Theo bài ra ta có :
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(\Rightarrow\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
\(\Rightarrow\frac{0}{a}=\frac{0}{b}=\frac{0}{c}=\frac{0}{d}\)
\(\Rightarrow\orbr{\begin{cases}a=b=c=d\\a\ne b\ne c\ne d\end{cases}}\)(loại)
Nếu a + b + c + d \(\ne\)0
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\)
=> a = b = c = d (đpcm)
chứng minh a/b = c/d
2a+2b/2a-2b = 2c+2d/2c-2d
ta có \(\frac{a}{b}\)=\(\frac{c}{d}\)đặt k ta có\(\hept{\begin{cases}a=b.k\\c=d.k\end{cases}}\)
vậy ta có\(\hept{\begin{cases}\frac{2\left(b.k\right)+2b}{2\left(b.k\right)-2b}=\frac{2b.k+2b}{2b.k-2b}=\frac{2b.\left(k+1\right)}{2b.\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\\\frac{2\left(d.k\right)+2d}{2\left(d.k\right)-2d}=\frac{2d.k+2d}{2d.k-2d}=\frac{2d.\left(k+1\right)}{2d.\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\end{cases}}\)
từ (1) và (2) ta được
=>\(\frac{k+1}{k-1}=\frac{k+1}{k-1}\) vậy\(\frac{2a+2b}{2a-2b}\)=\(\frac{2c+2d}{2c-2d}\)(điều phải chứng minh)
cho a,b,c,d >0 thỏa a+b+c+d=4 chứng minh \(\frac{a}{1+b^2c}+\frac{b}{1+c^2a}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\)
cho a/b=c/d chứng minh 2a-3b/a+2b=2c-3d/c+2d
cho \(\frac{a}{b}=\frac{c}{d}\)chứng minh\(2a-\frac{3b}{a}+2b=2c-\frac{3d}{c}+2d\)
đề đúng không vậy ta ??
dễ thôi
a/b=c/d
=> a/c=b/d
=>2a/2c=3b/3d=a/c=2b/2d
=>2a-3b/2c-3d=a+2b/c=2d
=> 2a-3b/a+2b=2c-3d/c+2d
vậy.....
hơi khó nhìn chút nhưng viết ra giấy là rõ ngay ấy mà
k cho mik
cho a/b=c/d chứng minh 2a-3b/a+2b=2c-3d/c+2d
Cho \(\frac{a+2c}{b+2d}=\frac{2a+c}{2b+d}\) .
CMR : \(\frac{a}{b}=\frac{a+c}{b+d};\frac{2a-c}{2b-d}=\frac{a-2c}{b-2d};\frac{a+2b}{a-b}=\frac{c+2d}{c-d}\)