sử dụng phương pháp đặt ẩn phụ
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ
\(a.\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(b.\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
\(c.\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
trong sách
nâng cao và
phát triển toán 8
kìa
Em hãy sử dụng phương pháp đặt ẩn phụ nha !!! a, gọi x2+x=a . khi đó đa thức đó trở thành ; a2+4a-12 . đến đoạn đó rồi em sẽ dễ dàng giải được . b, goi x2+x+1=m suy ra x2+x+2=m-1 , khi đó đa thuc trở thành ; m(m+1)-12 giải tiếp nha .
Giải pt dùng phương pháp đặt ẩn phụ
\(e.\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
\(g.\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(h.\left(x^2+x+1\right)\left(x^2+3x+1\right)+x^2\)
~~~~~e)~~~~~
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt \(x^2+x+1=v\)
Ta có: \(v.\left(v+1\right)-12\)
\(=v^2+v-12\)
\(=v^2-3v+4v-12\)
\(=v\left(v-3\right)+4\left(v-3\right)\)
\(=\left(v-3\right)\left(v+4\right)\)
\(=\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
~~~~~g)~~~~~
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)(nhân cái đầu vs cái cuối, hai cái giữa nhân vs nhau)
Đặt \(x^2+5x+5=t\)
Ta có: \(\left(t-1\right)\left(t+1\right)-24\)
\(=t^2-1-24\)
\(=t^2-25\)
\(=\left(t-5\right)\left(t+5\right)\)
\(=\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
~~~~~h)~~~~~
\(\left(x^2+x+1\right)\left(x^2+3x+1\right)+x^2\)
Đặt \(x^2+2x+1=n\)
Ta có: \(\left(n-x\right)\left(n+x\right)+x^2\)
\(=n^2-x^2+x^2\)
\(=n^2\)
\(=\left(x^2+2x+1\right)^2\)
\(=\left(\left(x+1\right)^2\right)^2\)
\(=\left(x+1\right)^4\)
~~~~~~~~~~~~~~~~~~~~
(Mong là mình làm đúng, chúc you học tốt nha, tíck cho mìk với nhé!)
Giải phương trình (sử dụng phương pháp đặt ẩn phụ)
\(3\left(x-2\right)^2\left(x+1\right)+2\sqrt{x^3-3x^2+3}-8=0\)
ĐKXĐ: ...
\(\Leftrightarrow3x^3-9x^2+4+2\sqrt{x^3-3x^2+3}=0\)
Đặt \(\sqrt{x^3-3x^2+3}=t\ge0\Rightarrow x^3-3x^2=t^2-3\)
Pt trở thành:
\(3\left(t^2-3\right)+4+2t=0\)
\(\Leftrightarrow3t^2+2t-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-\frac{5}{3}< 0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^3-3x^2+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-2x-2\right)=0\)
phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ :
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
(x + 1)(x + 2)(x + 3)(x + 4) - 24
= x4 + 10x3 + 35x2 + 50x + 24 - 24
= x4 + 10x3 + 35x2 + 50x
( x + 1 ). ( x + 2 ) ( x + 3 ) ( x + 4 ) - 24
= ( x2 + 5x + 4 ) .( x2 + 5x + 6 ) - 24
Đặt t = x2 + 5x + 5
=> ( t - 1 ). ( t + 1 ) - 24
= t2 - 1 - 24
= t2 - 25
= ( t - 5 ). ( t + 5 )
= ( x2 + 5x + 5 - 5 ) . ( x2 + 5x + 5 + 5 )
= ( x2 + 5x ) . ( x2 + 5x + 10 )
= x. ( x + 5 ) . ( x2 + 5x + 10 )
phân tích đa thức sau thành nhân tử bằng phương pháp đặt ẩn phụ :
\(A=\left(x^2-3x+2\right)\left(x^2-3x-6\right)+12\)
Đặt x^2-3x-2=t =>(t+4)(t-4)+12=t-16+12=t-4=(t+2)(t-2)
=>(x^2-3x-2+2)(x^2-3x-2-2)=(x^2-3x)(x^2-3x-4)
Mọi người giúp mình bài này với :
Phân tích đa thức thành nhân tử bằng phương pháp "đặt ẩn phụ" :
1) \(E=\left(x^2+3x+2\right).\left(x^2+7x+12\right)-24\)
2) \(F=\left(x^2+3x+2\right).\left(x^2+7x+12\right)+1\)
Bạn ơi , mình cho bạn ví dụ và hướng dẫn cách làm nha
f(x)=3x3 – 7x2 + 17x–5f(x)
Hướng dẫn:
±1,±5±1,±5 không là nghiệm của f(x)f(x), như vậy f(x)f(x) không có nghiệm nguyên. Nên f(x)f(x) nếu có nghiệm thì là nghiệm hữu tỉ
Ta nhận thấy x=x= 1313 là nghiệm của f(x)f(x) do đó f(x)f(x) có một nhân tử là 3x–13x–1. Nên
f(x)= 3x3 – 7x2 + 17x – 5 = 3x3− x2− 6x2 + 2x + 15x − 5f(x)
= 3x3 – 7x2 + 17x – 5 = 3x3 − x2 − 6x2 + 2x + 15x − 5
= (3x3−x2 ) − ( 6x2 −2x ) + (15x−5) = (3x3 − x2) − (6x2 − 2x) + (15x−5)
= x2 ( 3x−1 )− 2x(3x−1) + 5(3x−1) = (3x − 1)(x2 − 2x + 5 )
Vì x2 − 2x + 5 = (x2 − 2x + 1) + 4 = (x−1)2 + 4>0x2 − 2x + 5= (x2 − 2x + 1) + 4= (x−1)2 + 4>0 với mọi xx nên không phân tích được thành nhân tử nữa
ình muốn giúp lắm nhưng mình......chưa học.mình mới học lớp 7
phân tích đa thức sau thành nhân tử bằng phương pháp đặt ẩn phụ :
\(\left(x^2+x+1\right)^2+3x\left(x^2+x+1\right)+2x^2\)
Đặt \(x^2+x+1=t\)
Ta có: \(\left(x^2+x+1\right)^2+3x\left(x^2+x+1\right)+2x^2\)
\(=t^2+3xt+2x^2\)
\(=t^2+xt+2xt+2x\)
\(=t\left(t+x\right)+2x\left(t+x\right)\)
\(=\left(t+x\right)\left(t+2x\right)\)
\(=\left(x^2+x+1+x\right)\left(x^2+x+1+2x\right)\)
\(=\left(x^2+2x+1\right)\left(x^2+3x+1\right)\)
\(=\left(x+1\right)^2\left(x^2+3x+1\right)\)
Chúc bạn học tốt.
giải phương trình bằng phương pháp đặt ẩn phụ:
ạ) \(2\sqrt{\left(-2x^2+5x+7\right)}=x^3-3x^2-x+12\)
b) \(x^2-3x+3=\left(4+3x-\frac{4}{x}\right)\sqrt{\left(x-1\right)}\)
phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ :
\(3\left(x^2+2x\right)^2-2\left(x^2+2x\right)-1\)
Đặt x^2+2x=t =>3t^2-2t-1=3t^2-3t+t-1=3t(t-1)+(t-1)=(t-1)(3t+1)
=>(x^2+2x-1)(3x^2+6x+1)