Tìm x, y, z ∈ N biết \(2018^x=2017^y+2016^z\)
Tìm x,y.z biết (x-2016)^2016+(y-2017)^2018 +/x-y+z/=0
vì (x-2016)^2016 >= 0 vs mọi x
(y-2017)^2018>= 0 vs mọi y
/x+y-z/ >= 0 vs mọi x,y,z
mà (x-2016)^2016+(y-2017)^2018+/x-y+z/=\(\hept{\begin{cases}\left(x-2016\right)^{2016}=0\\^{\left(-2017\right)^{2018}}=0\\x+y-z=0\end{cases}}\)0 nên \(\hept{\begin{cases}x-2016=0\\y-2017=0\\x+y-z\end{cases}}\)\(\hept{\begin{cases}x=2016\\y=2017\\x+y-z=0\end{cases}}\)
mà x+y=2016+2017=4033
\(\Rightarrow\)4033-z=0
z=4033
vậy x=2016 y=2017 z=4033
tìm x,y,z thuộc N biết
2018x=2017y+2016z giúp mk vs ak mk đang gấp
cho x,y,z thỏa mãn \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\left(\frac{1}{x+y+z}\right)=1\)
tìm B=\(\left(x^{2016}+y^{2016}\right)\left(y^{2017}+z^{2017}\right)\left(z^{2018}+x^{2018}\right)\)
Cho 3 số x,y,z thỏa mãn : x/2016 = y/2017 = z/2018
a CMR : (x-z)^2 = 8(x-y) (y-z)
b Cho biết x/24 + y/4 = z/2018 . Tính x,y,z ?
Tìm giá trị nhỏ nhất của biểu thức A = /x+1/ + /x-2017/ với x là số nguyên
Tìm các số tự nhiên x , y , z thỏa mãn phương trình : 2016^x+2017^y=2018^z
LƯU Ý
Các bạn học sinh ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math không thể áp dụng các biện pháp như trừ điểm, thậm chí mở vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần
\(x,y,z\ne0\)vế trái luôn lẻ VP luon chan=>\(x,y,z\)phai co so =0
y,z=0 vo nghiem
x=0=> 1+2017^y=2018^z
co nghiem (x,y,z)=(0,1,1)
cho 3 số x,y,z tm\(\hept{\begin{cases}x+y+z=2010\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2010}\end{cases}}\)
tính(x2016+y2016)(y2017+z2017)(z2018+x2018)
Từ giả thiết ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow x+y=0\) hoặc \(y+z=0\) hoặc \(z+x=0\)
+) Nếu x + y = 0 hoặc z + x = 0 thì ta không tính được giá trị biểu thức.
+) Nếu y + z = 0 thì \(y=-z\Leftrightarrow y^{2017}=-z^{2017}\Leftrightarrow y^{2017}+z^{2017}=0\)
Suy ra \(\left(x^{2016}+y^{2016}\right)\left(y^{2017}+z^{2017}\right)\left(x^{2018}+z^{2018}\right)=0\)
cho 0<x,y,z<=1 tìm GTLN của
x^2016 + y^2017 -z^2018 -xy -yz -zx.
Tìm các số tự nhiên x,y,z thỏa mãn : 2018x = 2017y + 2016z
\(2016^z+2017^y=2018^x\)
\(\text{TH1 : z = 0}\)
\(\Leftrightarrow2016^0+2017^y=2018^x\)
\(\Leftrightarrow1+2017^y=2018^x\)
\(\Leftrightarrow y=1;x=1\)
\(\text{TH2 : y = 0}\)
\(\Leftrightarrow2016^z+2017^0=2018^x\)
\(\Leftrightarrow2016^z+1=2018^x\)
\(\text{Vế trái là số lẻ }\Leftrightarrow x\ge1\)
\(\text{Vế phải là số chẵn }\Leftrightarrow x\ge1\)
\(\Rightarrow\text{TH2 bị loại}\)
\(\text{TH3 : }x,y,z\ne0\)
\(\Leftrightarrow2016^z+2017^y\text{ là số lẻ}\)
\(\Leftrightarrow2018^x\text{ là số chẵn}\)
\(\Rightarrow\text{TH3 bị loại}\)
\(\text{Vậy x = 0 ; y = 1 ; z = 1}\)
Gợi ý: 2017y là số lẻ
2016z và 2018x là số chẵn trừ khi x=0 ; z=0
Mà 2018x= 2017y + 2016z
=> y=0
=> 2018x=2016z+1
Mặt khác 2018x >= 2016z
Dấu bằng xảy ra <=> x=0;z=0
Thử lại: 1 = 2 vô lí
Vậy không có x;y;z; là số tự nhiên thỏa mãn
mik vt lộn dòng cuối nha x=1 ; y=1;z=0
cho x^2016 + y^2016 + z^2016 = x^2019 + y^2019 + z^2019 = 1
tính P = (x-1)^2017 + (y-1)^2018 + (z-1)^2019