tim x để \(p< \dfrac{1}{2}\) \(p=\dfrac{-3}{\sqrt{x}+3}\)
2. \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)
a. Tim ĐKXĐ rồi rút gọn A
b. Tính giá trị của A với x =36
c. Tìm x để \(\left|A\right|>A\)
3. \(M=\left|\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right|:\dfrac{3}{\sqrt{x}-3}\)
a. Tìm ĐKXĐ rồi rút gọn M
b. Tìm x để M > \(\dfrac{1}{3}\)
c. Tìm x để biểu thức M đạt được giá trị lớn nhất, tìm giá trị lớn nhất đó
help me
3:
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >9\end{matrix}\right.\)
\(M=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}\)
\(=\dfrac{\sqrt{x}+3-\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{3}\)
\(=\dfrac{6}{3\left(\sqrt{x}+3\right)}=\dfrac{2}{\sqrt{x}+3}\)
b: M>1/3
=>M-1/3>0
=>\(\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{3}>0\)
=>\(\dfrac{6-\sqrt{x}-3}{3\left(\sqrt{x}+3\right)}>0\)
=>\(3-\sqrt{x}>0\)
=>\(\sqrt{x}< 3\)
=>0<=x<9
c: \(\sqrt{x}+3>=3\) với mọi x thỏa mãn ĐKXĐ
=>\(M=\dfrac{2}{\sqrt{x}+3}< =\dfrac{2}{3}\) với mọi x thỏa mãn ĐKXĐ
Dấu = xảy ra khi x=0
Câu 1
a) A =3
B =\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\) (điêu kiện:x≥0;x≠4)
b)Tim giá trị của x để B=\(\dfrac{2}{3}\)A
\(B=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{x-4}=\dfrac{3x-6\sqrt{x}}{x-4}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
B=2/3A
=>3căn x/căn x+2=2/3*3=2
=>3căn x=2căn x+4
=>x=16
\(\dfrac{2\sqrt{X}-9}{x-5\sqrt{X}+6}-\dfrac{\sqrt{X}+3}{\sqrt{X}-2}-\dfrac{2\sqrt{X}+1}{3-\sqrt{X}}Tim\:X\:de\:C< 1\)
\(\dfrac{2\sqrt{X}-9}{x-5\sqrt{X}+6}-\dfrac{\sqrt{X}+3}{\sqrt{X}-2}-\dfrac{2\sqrt{X}+1}{3-\sqrt{X}}\) \(\left(X\ne2;X\ne3,X\ge0\right)\)
\(=\dfrac{2\sqrt{X}-9-\left(\sqrt{X}+3\right)\left(\sqrt{X}-3\right)+\left(2\sqrt{X}+1\right)\left(\sqrt{X}-2\right)}{\left(\sqrt{X}-2\right)\left(\sqrt{X}-3\right)}\)
\(=\dfrac{2\sqrt{X}-9-X+9+2X-4\sqrt{X}+\sqrt{X}-2}{\left(\sqrt{X}-2\right)\left(\sqrt{X}-3\right)}\)
\(=\dfrac{X-\sqrt{X}-2}{\left(\sqrt{X}-2\right)\left(\sqrt{X}-3\right)}=\dfrac{X-2\sqrt{X}+\sqrt{X}-2}{\left(\sqrt{X}-2\right)\left(\sqrt{X}-3\right)}\)
\(=\dfrac{\sqrt{X}\left(\sqrt{X}-2\right)+\left(\sqrt{X}-2\right)}{\left(\sqrt{X}-2\right)\left(\sqrt{X}-3\right)}=\dfrac{\left(\sqrt{X}-2\right)\left(\sqrt{X}+1\right)}{\left(\sqrt{X}-2\right)\left(\sqrt{X}-3\right)}=\dfrac{\sqrt{X}+1}{\sqrt{X}-3}\)
\(C=\dfrac{\sqrt{X}+1}{\sqrt{X}-3}< 1\)
\(\Rightarrow\dfrac{\sqrt{X}+1-\sqrt{X}+3}{\sqrt{X}-3}< 0\)
\(\Rightarrow\dfrac{4}{\sqrt{X}+3}< 0\) ( VÔ LÍ)
⇒ Không có X thỏa mãn
A = \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-3.\left(\dfrac{\sqrt{x}+3}{x-9}\right)\right):\left(\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}-1\right)\)
a) Rut gon A
b) Tim GTNN cua A
tim a,b để lim \(\dfrac{ax+b-2\sqrt{x}}{x^3-3x+2}=\dfrac{1}{12}\) khi x->1
Do mẫu số có nghiệm kép \(x=1\) và giới hạn hữu hạn \(\Rightarrow ax+b-2\sqrt{x}=0\) có nghiệm kép \(x=1\)
\(\Rightarrow a+b-2=0\Rightarrow b=2-a\)
\(\Rightarrow ax+2-a-2\sqrt{x}=0\)
\(\Rightarrow a\left(x-1\right)-\dfrac{2\left(x-1\right)}{\sqrt{x}+1}=0\Leftrightarrow\left(x-1\right)\left(a-\dfrac{2}{\sqrt{x}+1}\right)=0\)
\(\Rightarrow a-\dfrac{2}{\sqrt{x}+1}=0\) cũng có nghiệm \(x=1\)
\(\Rightarrow a-\dfrac{2}{1+1}=0\Rightarrow a=1\Rightarrow b=1\)
Thử lại: \(\lim\limits_{x\rightarrow1}\dfrac{x+1-2\sqrt{x}}{\left(x-1\right)^2\left(x+2\right)}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+2\right)\left(x+1+2\sqrt{x}\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{1}{\left(x+2\right)\left(x+1+2\sqrt{x}\right)}=\dfrac{1}{12}\) (thỏa mãn)
cho P=\(\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{x-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\\ \)
a, rut gon
b, tim x de P=\(\sqrt{x}-1\)
a/ ĐKXĐ: \(x\ge0,x\ne1\)
\(P=\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{x-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)
= \(\dfrac{3\left(\sqrt{x}+1\right)+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
= \(\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
= \(\dfrac{4\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
= \(\dfrac{4\sqrt{x}}{\sqrt{x}+1}\)
b/ Với \(x\ge0,x\ne1\)
Để \(P=\sqrt{x}-1\Leftrightarrow\dfrac{4\sqrt{x}}{\sqrt{x}+1}=\sqrt{x}-1\)
\(\Leftrightarrow4\sqrt{x}=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow x-4\sqrt{x}-1=0\)
\(\Leftrightarrow\left(\sqrt{x}-2+\sqrt{5}\right)\left(\sqrt{x}-2-\sqrt{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2+\sqrt{5}=0\\\sqrt{x}-2-\sqrt{5}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2-\sqrt{5}\left(ktm\right)\\\sqrt{x}=2+\sqrt{5}\left(tm\right)\end{matrix}\right.\)
\(\Leftrightarrow x=9+4\sqrt{5}\)
Vậy để \(P=\sqrt{x}-1\) thì \(x=9+4\sqrt{5}\)
cho P= (\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)+ \(\dfrac{\sqrt{x}}{\sqrt{x-3}}\)-\(\dfrac{3x+3}{x-9}\)) : (\(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}\)-1)
a, Rút gọn P
b, Tìm x để P < \(\dfrac{1}{2}\)
c, Tìm GTNN của P
a: Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{2\sqrt{x}-2-\sqrt{x}+3}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
A=\(\dfrac{3\sqrt{x}-6}{x-2\sqrt{x}}+\dfrac{\sqrt{x}-3}{\sqrt{x}}-\dfrac{1}{2-\sqrt{x}}\) và B=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\)
Cho P=A.B. Tìm số nguyên x để \(\sqrt{P}< \dfrac{1}{3}\)
Ta có: \(P=A\cdot B\) (ĐK: \(x>0;x\ne4\))
\(=\left(\dfrac{3\sqrt{x}-6}{x-2\sqrt{x}}+\dfrac{\sqrt{x}-3}{\sqrt{x}}-\dfrac{1}{2-\sqrt{x}}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)
\(=\left[\dfrac{3\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}}+\dfrac{1}{\sqrt{x}-2}\right]\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)
\(=\left(\dfrac{3+\sqrt{x}-3}{\sqrt{x}}+\dfrac{1}{\sqrt{x}-2}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)
\(=\left(1+\dfrac{1}{\sqrt{x}-2}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+9}\)
Với x > 0; x ≠ 4 thì \(\sqrt{P}< \dfrac{1}{3}\Leftrightarrow P< \dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+9}< \dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+9}-\dfrac{1}{9}< 0\)
\(\Leftrightarrow\dfrac{9\left(\sqrt{x}-1\right)}{9\left(\sqrt{x}+9\right)}-\dfrac{\sqrt{x}+9}{9\left(\sqrt{x}+9\right)}< 0\)
\(\Leftrightarrow\dfrac{9\sqrt{x}-9-\sqrt{x}-9}{9\sqrt{x}+81}< 0\)
\(\Leftrightarrow\dfrac{8\sqrt{x}-18}{9\sqrt{x}+18}< 0\)
Ta thấy: \(9\sqrt{x}+18>0\forall x\)
\(\Rightarrow8\sqrt{x}-18< 0\)
\(\Rightarrow\sqrt{x}< \dfrac{18}{8}\)
\(\Rightarrow\sqrt{x}< \dfrac{9}{4}\Leftrightarrow x< \dfrac{81}{16}\)
Kết hợp với điều kiện, ta được: \(0< x\le5\)\(;x\ne4\)
\(\Rightarrow x\in\left\{1;2;3;5\right\};x\in Z\) thì \(\sqrt{P}< \dfrac{1}{3}\)
#Urushi
\(P=\left(\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{\sqrt{x}}\right).\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)
a, rut gon
b, tim x de P=\(\sqrt{x}\)
a: Sửa đề; \(P=\left(\dfrac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\right)\cdot\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)
\(=\dfrac{3x+3\sqrt{x}-3-x+1+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{1-1+\sqrt{x}}{1-\sqrt{x}}\)
\(=\dfrac{3x+3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}}{1-\sqrt{x}}=\dfrac{3\sqrt{x}}{1-\sqrt{x}}\)
b: Để \(P=\sqrt{x}\) thì \(3\sqrt{x}=\sqrt{x}-x\)
\(\Leftrightarrow x+2\sqrt{x}=0\)
hay x=0