Tìm x biết:
\(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)
Tìm x
1) \(\sqrt{\dfrac{3x-1}{x+2}}=2\)
2)\(\sqrt{\dfrac{5x-7}{2x- 1}}=2\)
3)\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)
4) \(\dfrac{\sqrt{x}-3}{\sqrt{x}+2}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
1: \(\Leftrightarrow\dfrac{3x-1}{x+2}=4\)
=>4x+8=3x-1
=>x=-9
2: \(\Leftrightarrow\dfrac{5x-7}{2x-1}=4\)
=>8x-4=5x-7
=>3x=-3
=>x=-1
3: ĐKXD: x>=0
\(PT\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)
=>\(x+\sqrt{x}-6=x-1\)
=>căn x=-1+6=5
=>x=25
4: ĐKXĐ: x>=0
PT =>\(\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
=>x-2*căn x-3=x-4
=>-2căn x-3=-4
=>2căn x+3=4
=>2căn x=1
=>căn x=1/2
=>x=1/4
Thu gọn P
\(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)
a) Tính P biết \(x=\sqrt{6+4\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
b) Tính P biết \(x=\dfrac{1}{\sqrt{2}-1}-\dfrac{1}{\sqrt{2}+1}\)
Tìm điều kiện có nghĩa:
1) \(\sqrt{\dfrac{-4}{x^2-1}}\)
2) \(\sqrt{\dfrac{x+1}{x-2}}\)
3) \(\sqrt{\dfrac{x-2}{x+3}}\)
4) \(\sqrt{\dfrac{a-3}{2-a}}\)
5) \(\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
1: ĐKXĐ: \(-1< x< 1\)
2: ĐKXĐ: \(\left[{}\begin{matrix}x>2\\x\le-1\end{matrix}\right.\)
3: ĐKXĐ: \(\left[{}\begin{matrix}x< -3\\x\ge2\end{matrix}\right.\)
4: ĐKXĐ: \(2< a\le3\)
Cho hai biểu thức:
P = \(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\) và Q = \(\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{2-\sqrt{x}}{x+2\sqrt{x}}\) với \(x>0\)
Biết biểu thức Q sau khi thu gọn được Q = \(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)
c) Tìm giá trị nhỏ nhất của biểu thức \(A=P:Q\) với điều kiện \(x\ge4\)
\(A=P:Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}:\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+4}=1+\dfrac{-5}{\sqrt{x}+4}\)
Điều kiện : \(x\ge4\Rightarrow\sqrt{x}+4\ge4\Rightarrow-\dfrac{5}{\sqrt{x}+4}\le-\dfrac{5}{4}\Rightarrow\dfrac{5}{\sqrt{x}+4}\ge\dfrac{5}{4}\)
Dấu ''='' xảy ra \(\Leftrightarrow x=0\)
Vậy \(min_A=\dfrac{5}{4}\Leftrightarrow x=0\)
Cho P = (\(\dfrac{1}{\sqrt{x}-1 }\) - \(\dfrac{1}{\sqrt{x}}\))(\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\) - \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\))
a. Tìm đkxđ và rút gọn P
b. Tìm x để P = \(\dfrac{1}{4}\)
Điều kiện: x>2
P= \(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{2}+2}{\sqrt{x}-1}\right)\)
P= \(\left(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
P= \(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)
P= \(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
b) P= \(\dfrac{1}{4}\)
⇔\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\) =\(\dfrac{1}{4}\)
⇔\(4\sqrt{x}-8=3\sqrt{x}\)
⇔\(\sqrt{x}=8\)
⇔x=64 (TM)
Vậy X=64(TMĐK) thì P=\(\dfrac{1}{4}\)
1.P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4\sqrt{x}-1}{c-4}\right):\dfrac{1}{\sqrt{c}+2}\)
Tìm x nguyên để P nguyên
Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4\sqrt{x}-1}{x-4}\right):\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x-2\sqrt{x}-x-2\sqrt{x}+4\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+2}{1}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)
Để P nguyên thì \(\sqrt{x}-2\in\left\{-1;1\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{1;3\right\}\)
hay \(x\in\left\{1;9\right\}\)
\(B=\dfrac{\sqrt{x}\left(1-x\right)^2}{1+\sqrt{x}}\div\left[\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\sqrt{x}\right)\times\left(\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}-\sqrt{x}\right)\right]\)
a) Rút gọn B
b) Tính B biết \(x=4-2\sqrt{3}\)
c) Tìm x để B = 2/3
d) So sánh B với 1
e) Tìm x để B>1
f) Tìm \(x\in Z\) để \(B\in Z\)
g) Tìm GTNN của B
h) Tìm m để B.m = 2 có nghiệm
ĐKXĐ: x>=0; x<>1
a: \(B=\dfrac{\sqrt{x}\left(x-1\right)^2}{\sqrt{x}+1}:\left(\left(x+\sqrt{x}+1+\sqrt{x}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\right)\)
\(=\dfrac{\sqrt{x}\left(x-1\right)^2}{\sqrt{x}+1}:\left[\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2\right]\)
\(=\dfrac{\sqrt{x}\left(x-1\right)^2}{\left(x-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
b: Khi x=4-2căn 3=(căn 3-1)^2 thì \(B=\dfrac{\sqrt{3}-1}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-1}{\sqrt{3}}=\dfrac{3-\sqrt{3}}{3}\)
c: B=2/3
=>căn x/căn x+1=2/3
=>căn x=2
=>x=4
d: \(B-1=\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}=-\dfrac{1}{\sqrt{x}+1}< 0\)
=>B<1
e: B>1
=>-1/căn x+1>0
=>căn x+1<0(vô lý)
=>KO có x thỏa mãn
f: B nguyên khi căn x chia hết cho căn x+1
=>căn x+1-1 chia hết cho căn x+1
=>căn x+1=1 hoặc căn x+1=-1(loại)
=>căn x=0
=>x=0
cho bt
P=(\(\dfrac{1}{\sqrt{x}-1}\)-\(\dfrac{1}{\sqrt{x}}\)):(\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)-\(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\))
a)Tìm đk của x để P xác định
b)Rút gọn P
c)Tìm xđể P=\(\dfrac{1}{4}\)
\(a,P\) xác định \(\Leftrightarrow\left[{}\begin{matrix}x>0\\x\ne1\\x\ne4\end{matrix}\right.\)
\(b,P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\\ =\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-1-x+4}\\ =\dfrac{1}{\sqrt{x}}.\dfrac{\sqrt{x}-2}{3}\\ =\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
\(c,P=\dfrac{1}{4}\Leftrightarrow\dfrac{\sqrt{x}-2}{3\sqrt{x}}=\dfrac{1}{4}\\ \Leftrightarrow\dfrac{4\left(\sqrt{x}-2\right)-3\sqrt{x}}{12\sqrt{x}}=0\\ \Leftrightarrow4\sqrt{x}-8-3\sqrt{x}=0\\ \Leftrightarrow\sqrt{x}=8\\ \Leftrightarrow x=64\left(tmdk\right)\)
Vậy \(x=64\) thì \(P=\dfrac{1}{4}\)
Tìm x
a)\(2\sqrt{2}-\dfrac{1}{2}.\sqrt{x}=0\)
b)\(2.\sqrt{x}-\sqrt{\dfrac{x}{3}}=1\)
c)\(4.\sqrt{x}+\sqrt{\dfrac{x}{2}}=\dfrac{1}{3}\)
a: Ta có: \(2\sqrt{2}-\dfrac{1}{2}\cdot\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\cdot\dfrac{1}{2}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{x}=4\sqrt{2}\)
hay x=32
b: Ta có: \(2\sqrt{x}-\sqrt{\dfrac{x}{3}}=1\)
\(\Leftrightarrow2\sqrt{x}-\dfrac{\sqrt{3}}{3}\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x}=\dfrac{6+\sqrt{3}}{11}\)
hay \(x=\dfrac{39+12\sqrt{3}}{121}\)
c: Ta có: \(4\sqrt{x}+\sqrt{\dfrac{x}{2}}=\dfrac{1}{3}\)
\(\Leftrightarrow4\sqrt{x}+\dfrac{\sqrt{2}}{2}\sqrt{x}=\dfrac{1}{3}\)
\(\Leftrightarrow\sqrt{x}=\dfrac{8-\sqrt{2}}{93}\)
hay \(x=\dfrac{66-16\sqrt{2}}{8649}\)
Tìm `ĐKXĐ`:
\(\sqrt{\dfrac{-5}{6+x}}\)
\(\sqrt{\dfrac{-2}{6-x}}\)
\(\sqrt{\dfrac{-x+3}{-6}}\)
\(\sqrt{\dfrac{7x-1}{-9}}\)
\(\sqrt{\dfrac{x+2}{x^2+2x+1}}\)
\(\sqrt{\dfrac{x-2}{x^2-2x+4}}\)
\(a,\dfrac{-5}{x+6}\ge0\\ mà\left(-5< 0\right)\\ \Rightarrow x+6< 0\\ \Rightarrow x< -6\\ b,\dfrac{2}{6-x}\ge0\\ mà\left(2>0\right)\\ \Rightarrow6-x>0\\ \Rightarrow x< 6\\ c,\dfrac{-x+3}{-6}\ge0\\ mà-6< 0\\ \Rightarrow-x+3< 0\\ \Rightarrow x>3\\\)
\(d,\dfrac{7x-1}{-9}\ge0\\mà-9< 0\\ \Rightarrow 7x-1\le0\\ \Rightarrow x\le\dfrac{1}{7}\\ e,\dfrac{x+2}{x^2+2x+1}\ge0\\ mà\left(x^2+2x+1\right)>0\forall x\\ \Rightarrow x+2\ge0\\ \Rightarrow x\ge-2\\ f,\dfrac{x-2}{x^2-2x+4}\ge0\\ mà\left(x^2-2x+4\right)>0\forall x\\ \Rightarrow x-2\ge0\\ \Rightarrow x\ge2\)
Chứng minh : \(x^2-2x+4>0\\ x^2-2x+1+3=\left(x-1\right)^2+3\ge3>0\)
a: ĐKXĐ: \(\dfrac{-5}{x+6}>=0\)
=>x+6<0
=>x<-6
b: ĐKXĐ: (-2)/(6-x)>=0
=>6-x<0
=>x>6
c: ĐKXĐ: (-x+3)/(-6)>=0
=>-x+3<=0
=>-x<=-3
=>x>=3
d: ĐKXĐ: (7x-1)/-9>=0
=>7x-1<=0
=>x<=1/7
e: ĐKXĐ: (x+2)/(x^2+2x+1)>=0
=>x+2>=0
=>x>=-1
f: ĐKXĐ: (x-2)/(x^2-2x+4)>=0
=>x-2>=0
=>x>=2