Tính giá trị biểu thức
C= \(\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
4.tính giá trị biểu thức:
\(A=\sqrt[3]{6\sqrt{3}+10}-\sqrt[3]{6\sqrt{3}-10}\)
\(B=\sqrt[3]{45+29\sqrt{2}}-\sqrt[3]{45-29\sqrt{2}}\)
2.so sánh
\(a.\sqrt[3]{5\sqrt{2}-7}-33\sqrt{2}và-1\)
3.tính giá trị của biểu thức:
\(B=\sqrt[3]{45+29\sqrt{2}}-\sqrt[3]{45-29\sqrt{2}}\)
Tính giá trị biểu thức
A = \(\sqrt[3]{6\sqrt{3}+10}\)TRỪ \(\sqrt[3]{6\sqrt{3}-10}\)
B= \(\sqrt[3]{45+29\sqrt{2}}\) + \(\sqrt[3]{45-29\sqrt{2}}\)
C=\(\sqrt[3]{2+10\sqrt{\frac{1}{27}}}\)+ \(\sqrt[3]{2-10\sqrt{\frac{1}{27}}}\)
A = \(\sqrt[3]{10+6\sqrt{3}}+\sqrt[3]{10-6\sqrt{3}}\)
<=> A3 = 20 - 3×2A
<=> A3 + 6A - 20 = 0
<=> A = 2
Tính giá trị của biểu thức
a. \(A=\sqrt[3]{6\sqrt{3}+10}-\sqrt[3]{6\sqrt{3}-10}\)
b. \(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
c. \(\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
cảm ơn các bạn trước nhaa
ta có: A3=\(6\sqrt{3}+10-6\sqrt{3}+10-3\sqrt[3]{\left(6\sqrt{3}+10\right)\left(6\sqrt{3}-10\right)}.\left(\sqrt[3]{6\sqrt{3}+10}-\sqrt[3]{6\sqrt{3}-10}\right)\)
=\(20-3.\sqrt[3]{8}.A\)=\(20-6A\)
do đó A3=20-6A↔A3+6A-20=0↔(A2+2A+10)(A-2)=0
dễ thấy A2+2A+10>0→A=2
b) giống a)
c)giống b)
Các bạn cho mình cả cách giải nha!
Thanks các bạn nhìu!!!!!
Bài 1: Giải phương trình sau
a, \(\sqrt[3]{x+1}+\sqrt[3]{7-x}=2\)
b, \(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)
Bài 2: Tính giá trị của các biểu thức sau
A=\(\sqrt[3]{6\sqrt{3}+10}-\sqrt[3]{6\sqrt{3}-10}\)
B= \(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
C= \(\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
D= \(\sqrt[3]{2+10\sqrt{\frac{1}{27}}}+\sqrt[3]{2-10\sqrt{\frac{1}{27}}}\)
1)
dat \(a=\sqrt[3]{x+1};b=\sqrt[3]{7-x}\)
ta co b=2-a
a^3+b^3=x+1+7-x=8
a^3+b^3=a^3+b^3+3ab(a+b)
ab(a+b)=0
suy ra a=0 hoac b=0 hoac a=-b
<=> x=-1; x=7
a=-b
a^3=-b^3
x+1=x+7 (vo li nen vo nghiem)
cau B tuong tu
2)
tat ca cac bai tap deu chung 1 dang do la
\(\sqrt[3]{a+m}+\sqrt[3]{b-m}\)voi m la tham so
dang nay co 2 cach
C1 lap phuong VD: \(B^3=10+3\sqrt[3]{< 5+2\sqrt{13}>< 5-2\sqrt{13}>}\left(B\right)\)
B^3=10-9B
B=1 cach nay nhanh nhung kho nhin
C2 dat an
\(a=\sqrt[3]{5+2\sqrt{13}};b=\sqrt[3]{5-2\sqrt{13}}\)
de thay B=a+b
a^3+b^3=10
ab=-3
B^3=10-9B
suy ra B=1
tuong tu giai cac cau con lai.
Bài 1:
a. Đặt \(a=\sqrt[3]{x+1}\); \(b=\sqrt[3]{7-x}\). Ta có:
\(\hept{\begin{cases}a+b=2\\a^3+b^3=8\end{cases}\Leftrightarrow a^3+\left(2-a\right)^3=8\Leftrightarrow...\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}a=0\\b=2\end{cases}}\)hoặc \(\hept{\begin{cases}a=2\\b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt[3]{x+1}=0\\\sqrt[3]{7-x}=2\end{cases}}\)hoặc \(\hept{\begin{cases}\sqrt[3]{x+1}=2\\\sqrt[3]{7-x}=0\end{cases}}\)
\(\Leftrightarrow x=-1\)hoặc \(x=7\)
Bài 2:
\(A=\sqrt[3]{\left(\sqrt{3}\right)^3+3.\left(\sqrt{3}\right)^2.1+3.\sqrt{3}.1^2+1^3}-\sqrt[3]{\left(\sqrt{3}\right)^3-3.\left(\sqrt{3}\right)^2.1+3.\sqrt{3}.1^2-1^3}\)
\(=\sqrt[3]{\left(\sqrt{3}+1\right)^3}-\sqrt[3]{\left(\sqrt{3}-1\right)^3}=\sqrt{3}+1-\sqrt{3}+1=2\)
Những câu khác làm tương tự.
thực hiện phép tính
\(\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
\(\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
\(=\sqrt[3]{27+27\sqrt{2}+18+2\sqrt{2}}+\sqrt[3]{27-27\sqrt{2}+18-2\sqrt{2}}\)
\(=\sqrt[3]{\left(3+\sqrt{2}\right)^3}+\sqrt[3]{\left(3-\sqrt{2}\right)^3}\)
\(=3+\sqrt{2}+3-\sqrt{2}=6\)
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
Tính \(\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
Rút gọn các biểu thức:
\(\frac{\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7+\sqrt{3}}}}{\sqrt{\sqrt{7-2}}}\)
Tính giá trị biểu thức:
\(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
Rút gọn: \(F=\sqrt[3]{45-29\sqrt{2}}+\sqrt[3]{45+29\sqrt{2}}\)
\(F=\sqrt[3]{27-27\sqrt{2}+18-2\sqrt{2}}\)\(+\sqrt[3]{27+27\sqrt{2}+18+2\sqrt{2}}\)
\(F=\sqrt[3]{\left(3-\sqrt{2}\right)^3}+\sqrt[3]{\left(3+\sqrt{2}\right)^3}\)
\(F=3+\sqrt{2}+3-\sqrt{2}=6\)