giai pt:
\(\sqrt{1-x^2}=(\frac{2}{3}-\sqrt{x})^2\)
1. Cho pt: x2 -2(m+1)x+m2=0 (1). Tìm m để pt có 2 nghiệm x1 ; x2 thỏa mãn (x1-m)2 + x2=m+2.
2. Giai pt: \(\left(x-1\right)\sqrt{2\left(x^2+4\right)}=x^2-x-2\)
3. Giai hệ pt: \(\left\{{}\begin{matrix}\frac{1}{\sqrt[]{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{matrix}\right.\)
4. Giai pt trên tập số nguyên \(x^{2015}=\sqrt{y\left(y+1\right)\left(y+2\right)\left(y+3\right)}+1\)
Giai pt :\(\sqrt{2-\frac{1}{\sqrt{2-x}}}=x\)
Điều kiện xác định : \(\hept{\begin{cases}2\ge\frac{1}{\sqrt{2-x}}\\x< 2\\x\ge0\end{cases}}\) \(\Leftrightarrow0\le x\le\frac{7}{4}\)
Ta có : \(\sqrt{2-\frac{1}{\sqrt{2-x}}}=x\)
\(\Rightarrow2-\frac{1}{\sqrt{2-x}}=x^2\)
\(\Leftrightarrow x^2\sqrt{2-x}-2\sqrt{2-x}+1=0\)
Đặt \(t=\sqrt{2-x},t\ge0\Rightarrow x=2-t^2\)
Ta có : \(\left(2-t^2\right)^2.t-2t+1=0\)
\(\Leftrightarrow t\left[\left(2-t^2\right)^2-1\right]-\left(t-1\right)=0\)
\(\Leftrightarrow t\left(2-t^2-1\right)\left(2-t^2+1\right)-\left(t-1\right)=0\)
\(\Leftrightarrow t\left(t-1\right)\left(t+1\right)\left(t^2-3\right)-\left(t-1\right)=0\)
\(\Leftrightarrow\left(t-1\right)\left[t\left(t+1\right)\left(t^2-3\right)-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-1=0\\t\left(t+1\right)\left(t^2-3\right)-1=0\end{cases}}\)
Nếu t - 1 = 0 => t = 1 ta có \(x=2-1^2=1\)(tmđk)Nếu \(t\left(t+1\right)\left(t^2-3\right)-1=0\) , từ điều kiện \(0\le x\le\frac{7}{4}\)ta có \(t\left(t+1\right)\left(t^2-3\right)-1\le-\frac{179}{256}< 0\)=> pt này vô nghiệm.Vậy pt có nghiệm x = 1
Giai PT
A=\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{2}\)
\(A=\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{2}\)
đkxđ \(\hept{\begin{cases}x\ge-\frac{1}{4}\\x\ge\frac{2}{3}\end{cases}}\)
đặt t=x+3 phương trình trở thành
\(A=\sqrt{4\left[x+3\right]-11}-\sqrt{3\left[x+3\right]-11}=\frac{x+3}{2}\)
\(A=\sqrt{4t-11}-\sqrt{3t-11}=\frac{t}{2}\)
\(\Leftrightarrow4t-11=\frac{t^2}{4}+3t-11+t\sqrt{3t-11}\)
\(\Leftrightarrow t^2-\frac{t^2}{4}=t\sqrt{3t-11}\)
\(\Leftrightarrow\frac{t\left[4-t\right]}{4}=t\sqrt{3t-11}\)
\(\Leftrightarrow\frac{\left[4-t\right]^2}{16}=3t-11\)
\(\Leftrightarrow t^2-56t+192=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=28+4\sqrt{37}\\t=28-4\sqrt{37}\end{cases}}\)
thế vào x+3=t suy ra
\(\orbr{\begin{cases}x=25+4\sqrt{37}\left[loại\right]\\x=25-4\sqrt{37}\left[nhận\right]\end{cases}}\)
\(S=\left\{25-4\sqrt{37}\right\}\)
Giai PT
a, \(x+\sqrt{2-x^2}=4y^2+4y+3\)
b,\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
giai pt
\(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\)
đk tự giải nhé
với x tjỏa mãn đk ta có
\(\sqrt{\frac{x^2+3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\Leftrightarrow\sqrt{x^3+3}=\frac{x^3+7x}{2\left(x+1\right)}\)
\(\Leftrightarrow\sqrt{x^3+3x}=\frac{x^3+3x+4x}{2\left(x+1\right)}\)
đặt \(\sqrt{x^3+3x}=a\)
ta có pt<=> \(a=\frac{a^2+4x}{2\left(x+1\right)}\Leftrightarrow2a\left(x+1\right)=a^2+4x\)
\(\Leftrightarrow2ax+2a=a^2+4x\Leftrightarrow a^2+4ax-2a-2ax=0\)
\(\Leftrightarrow\left(a^2-2ax\right)-\left(2a-4x\right)=0\Leftrightarrow a\left(a-2x\right)-2\left(a-2x\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(a-2x\right)=0\)
đến đây tự làm nhé
Giai pt\(2+\sqrt{4-3\sqrt{10-x}}=\frac{x}{3}\)
giai pt:
a) \(\frac{3x+\sqrt{x^2-x-1}}{x+1}=\frac{7}{3}\)
b) \(\frac{2}{2\sqrt{x^2-2x+1}}=\frac{1}{x-1}\)
c) \(\frac{6}{6-\sqrt{x}}+\frac{1}{\sqrt{x}}=1\)
d) \(\frac{2}{\sqrt{x-1}}+\sqrt{x-1}=\frac{3\sqrt{x-1}+1}{\sqrt{x-1}}-1\)
e) \(\sqrt{x+3-\sqrt{x-1}=2}\)
f) \(\sqrt{x^3+x^2+6x+28}=x+5\)
g) \(\sqrt{x^4-4x^3+14x-11}=1-x\)
ĐK: \(x^4-4x^3+14x-11\ge0\) (*)
\(PT\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^4-4x^3+14x-11=x^2-2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^4-4x^3-x^2+16x-12=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x+2\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)(tm)
e/ ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow x+3-\sqrt{x-1}=4\)
\(\Leftrightarrow\sqrt{x-1}=x-1\)
\(\Leftrightarrow x-1=x^2-2x+1\)
\(\Leftrightarrow x^2-3x+2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
f/ \(\Leftrightarrow\left\{{}\begin{matrix}x+5\ge0\\x^3+x^2+6x+28=\left(x+5\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\x^3-4x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\\left(x-1\right)\left(x^2+x-3\right)=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{-1\pm\sqrt{13}}{2}\\\end{matrix}\right.\)
a/ ĐKXĐ: ...
\(\Leftrightarrow9x+3\sqrt{x^2-x-1}=7x+7\)
\(\Leftrightarrow3\sqrt{x^2-x-1}=7-2x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{7}{2}\\9\left(x^2-x-1\right)=\left(7-2x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{7}{2}\\5x^2+19x-58=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=-\frac{29}{5}\end{matrix}\right.\)
b/ ĐKXĐ: \(x\ne1\)
\(\Leftrightarrow\frac{1}{\sqrt{\left(x-1\right)^2}}=\frac{1}{x-1}\)
\(\Leftrightarrow\frac{1}{\left|x-1\right|}=\frac{1}{x-1}\)
\(\Rightarrow x-1>0\Rightarrow x>1\)
Giai pt:\(\sqrt{x-2}+\sqrt{y+2003}+\sqrt{z-2004}=\frac{1}{2}\left(x+y+z\right)\)
\(\Leftrightarrow x+y+z=2\sqrt{x-2}+2\sqrt{y+2003}+2\sqrt{z-2004}\)
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2003-2\sqrt{y+2003}+1\right)\)
\(+\left(z-2004-2\sqrt{z-2004}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2003}-1\right)^2+\left(\sqrt{z-2004}-1\right)^2=0\)
Vì biểu thức trên là tổng của các số hạng không âm nên nó bằng 0 khi và chỉ khi các số hạng phải bằng 0
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-2003}=1\\\sqrt{z-2004}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2004\\z=2005\end{cases}}}\)
\(ĐK:x\ge2,y\ge-2003,z\ge2004\)
Pt đã cho tương đương :
\(x+y+z-2\sqrt{x-2}-2\sqrt{y+2003}-2\sqrt{z-2004}=0\)
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2003-2\sqrt{y+2003}+1\right)+\left(z-2004-2\sqrt{z-2004}+1\right)\)\(=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2003}-1\right)^2+\left(\sqrt{z-2004}-1\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=1\\y+2003=1\\z-2004=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=-2002\\z=2005\end{cases}}\)(Thỏa mãn)
giai pt \(\frac{1}{1-x^2}=\frac{3x}{\sqrt{1-x^2}}-1\)
ĐKXĐ:...
Đặt \(\frac{x}{\sqrt{1-x^2}}=t\Rightarrow t^2=\frac{x^2}{1-x^2}=\frac{1}{1-x^2}-1\)
Pt trở thành:
\(t^2+1=3t-1\Leftrightarrow t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{1-x^2}=t^2+1=2\\\frac{1}{1-x^2}=t^2+1=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=\frac{1}{2}\\x^2=\frac{4}{5}\end{matrix}\right.\)
\(\Leftrightarrow...\)