Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Angela jolie
Xem chi tiết
Nguyễn Minh Quang 123
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 8 2016 lúc 19:15

Điều kiện xác định : \(\hept{\begin{cases}2\ge\frac{1}{\sqrt{2-x}}\\x< 2\\x\ge0\end{cases}}\) \(\Leftrightarrow0\le x\le\frac{7}{4}\)

Ta có : \(\sqrt{2-\frac{1}{\sqrt{2-x}}}=x\)

\(\Rightarrow2-\frac{1}{\sqrt{2-x}}=x^2\)

\(\Leftrightarrow x^2\sqrt{2-x}-2\sqrt{2-x}+1=0\)

Đặt \(t=\sqrt{2-x},t\ge0\Rightarrow x=2-t^2\)

Ta có : \(\left(2-t^2\right)^2.t-2t+1=0\)

\(\Leftrightarrow t\left[\left(2-t^2\right)^2-1\right]-\left(t-1\right)=0\)

\(\Leftrightarrow t\left(2-t^2-1\right)\left(2-t^2+1\right)-\left(t-1\right)=0\)

\(\Leftrightarrow t\left(t-1\right)\left(t+1\right)\left(t^2-3\right)-\left(t-1\right)=0\)

\(\Leftrightarrow\left(t-1\right)\left[t\left(t+1\right)\left(t^2-3\right)-1\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-1=0\\t\left(t+1\right)\left(t^2-3\right)-1=0\end{cases}}\)

Nếu t - 1 = 0 => t = 1 ta có  \(x=2-1^2=1\)(tmđk)Nếu \(t\left(t+1\right)\left(t^2-3\right)-1=0\) , từ điều kiện \(0\le x\le\frac{7}{4}\)ta có \(t\left(t+1\right)\left(t^2-3\right)-1\le-\frac{179}{256}< 0\)=> pt này vô nghiệm.

Vậy pt có nghiệm x = 1

Nguyễn Tùng Dương
13 tháng 8 2016 lúc 21:03

toán mấy ạ

Nguyễn Minh Quang 123
16 tháng 8 2016 lúc 18:05

sai đề đó bạn

Yuri Nguyễn
Xem chi tiết
kagamine rin len
1 tháng 10 2016 lúc 21:16

\(A=\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{2}\)

đkxđ \(\hept{\begin{cases}x\ge-\frac{1}{4}\\x\ge\frac{2}{3}\end{cases}}\)

đặt t=x+3 phương trình trở thành 

\(A=\sqrt{4\left[x+3\right]-11}-\sqrt{3\left[x+3\right]-11}=\frac{x+3}{2}\)

\(A=\sqrt{4t-11}-\sqrt{3t-11}=\frac{t}{2}\)

\(\Leftrightarrow4t-11=\frac{t^2}{4}+3t-11+t\sqrt{3t-11}\)

\(\Leftrightarrow t^2-\frac{t^2}{4}=t\sqrt{3t-11}\)

\(\Leftrightarrow\frac{t\left[4-t\right]}{4}=t\sqrt{3t-11}\)

\(\Leftrightarrow\frac{\left[4-t\right]^2}{16}=3t-11\)

\(\Leftrightarrow t^2-56t+192=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=28+4\sqrt{37}\\t=28-4\sqrt{37}\end{cases}}\)

thế vào x+3=t suy ra 

\(\orbr{\begin{cases}x=25+4\sqrt{37}\left[loại\right]\\x=25-4\sqrt{37}\left[nhận\right]\end{cases}}\)

\(S=\left\{25-4\sqrt{37}\right\}\)

Yuri Nguyễn
Xem chi tiết
Tuyển Trần Thị
Xem chi tiết
vũ tiền châu
9 tháng 9 2017 lúc 18:52

đk tự giải nhé 

với x tjỏa mãn đk ta có 

\(\sqrt{\frac{x^2+3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\Leftrightarrow\sqrt{x^3+3}=\frac{x^3+7x}{2\left(x+1\right)}\)

\(\Leftrightarrow\sqrt{x^3+3x}=\frac{x^3+3x+4x}{2\left(x+1\right)}\)

đặt \(\sqrt{x^3+3x}=a\)

ta có pt<=> \(a=\frac{a^2+4x}{2\left(x+1\right)}\Leftrightarrow2a\left(x+1\right)=a^2+4x\)

\(\Leftrightarrow2ax+2a=a^2+4x\Leftrightarrow a^2+4ax-2a-2ax=0\)

\(\Leftrightarrow\left(a^2-2ax\right)-\left(2a-4x\right)=0\Leftrightarrow a\left(a-2x\right)-2\left(a-2x\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a-2x\right)=0\)

đến đây tự làm nhé

Tang Khanh Hung
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Thị Ngọc Thơ
1 tháng 10 2019 lúc 23:10

ĐK: \(x^4-4x^3+14x-11\ge0\) (*)

\(PT\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^4-4x^3+14x-11=x^2-2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^4-4x^3-x^2+16x-12=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x+2\right)=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)(tm)

Nguyễn Việt Lâm
1 tháng 10 2019 lúc 23:02

e/ ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow x+3-\sqrt{x-1}=4\)

\(\Leftrightarrow\sqrt{x-1}=x-1\)

\(\Leftrightarrow x-1=x^2-2x+1\)

\(\Leftrightarrow x^2-3x+2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

f/ \(\Leftrightarrow\left\{{}\begin{matrix}x+5\ge0\\x^3+x^2+6x+28=\left(x+5\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\x^3-4x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\\left(x-1\right)\left(x^2+x-3\right)=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{-1\pm\sqrt{13}}{2}\\\end{matrix}\right.\)

Nguyễn Việt Lâm
1 tháng 10 2019 lúc 22:53

a/ ĐKXĐ: ...

\(\Leftrightarrow9x+3\sqrt{x^2-x-1}=7x+7\)

\(\Leftrightarrow3\sqrt{x^2-x-1}=7-2x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{7}{2}\\9\left(x^2-x-1\right)=\left(7-2x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{7}{2}\\5x^2+19x-58=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=-\frac{29}{5}\end{matrix}\right.\)

b/ ĐKXĐ: \(x\ne1\)

\(\Leftrightarrow\frac{1}{\sqrt{\left(x-1\right)^2}}=\frac{1}{x-1}\)

\(\Leftrightarrow\frac{1}{\left|x-1\right|}=\frac{1}{x-1}\)

\(\Rightarrow x-1>0\Rightarrow x>1\)

Tang Khanh Hung
Xem chi tiết
Khanh Nguyễn Ngọc
11 tháng 9 2020 lúc 22:34

\(\Leftrightarrow x+y+z=2\sqrt{x-2}+2\sqrt{y+2003}+2\sqrt{z-2004}\)

\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2003-2\sqrt{y+2003}+1\right)\)

\(+\left(z-2004-2\sqrt{z-2004}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2003}-1\right)^2+\left(\sqrt{z-2004}-1\right)^2=0\)

Vì biểu thức trên là tổng của các số hạng không âm nên nó bằng 0 khi và chỉ khi các số hạng phải bằng 0

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-2003}=1\\\sqrt{z-2004}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2004\\z=2005\end{cases}}}\)

Khách vãng lai đã xóa
Trí Tiên
11 tháng 9 2020 lúc 22:36

\(ĐK:x\ge2,y\ge-2003,z\ge2004\)

Pt đã cho tương đương :

\(x+y+z-2\sqrt{x-2}-2\sqrt{y+2003}-2\sqrt{z-2004}=0\)

\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2003-2\sqrt{y+2003}+1\right)+\left(z-2004-2\sqrt{z-2004}+1\right)\)\(=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2003}-1\right)^2+\left(\sqrt{z-2004}-1\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=1\\y+2003=1\\z-2004=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=-2002\\z=2005\end{cases}}\)(Thỏa mãn)

Khách vãng lai đã xóa
oooloo
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 10 2020 lúc 21:03

ĐKXĐ:...

Đặt \(\frac{x}{\sqrt{1-x^2}}=t\Rightarrow t^2=\frac{x^2}{1-x^2}=\frac{1}{1-x^2}-1\)

Pt trở thành:

\(t^2+1=3t-1\Leftrightarrow t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{1-x^2}=t^2+1=2\\\frac{1}{1-x^2}=t^2+1=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=\frac{1}{2}\\x^2=\frac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow...\)