cho AB//CD và AB=CD . chứng minh rằng
a, tam giác DAC = tam giác BCA
b , AD=BC
c, AD//BC
đ, gọi I là trung điểm của AC . K là trung điểm của AD . H là trung điểm của BC . Chứng minh IK=IH
e, chứng minh I là trung điểm của đoạn thẳng BD
1. Cho bốn điểm A, B, C, D sao cho AB//CD và AD//BC. Chứng minh tam giác ABC = tam giác CDA.
2. Cho bốn điểm A, B, C, D sao cho AB//CD và AD//BC. Chứng minh AB = CD.
3. Cho tam giác ABC. Trên các tia đối AB, AC lần lượt lấy các điểm E, F sao cho AE = AC, AF = AC. Chứng minh tam giác ABC = tam giác AFE.
1) Ta có hình vẽ sau:
Vì AB // CD nên \(\widehat{A_1}\) = \(\widehat{C_1}\) (so le trong)
AD // BC nên \(\widehat{A_2}\) = \(\widehat{C_2}\) ( so le trong)
Xét ΔABC và ΔCDA có:
\(\widehat{A_1}\) = \(\widehat{C_1}\) (cm trên)
AC: Cạnh chung
\(\widehat{A_2}\) = \(\widehat{C_2}\) (cm trên)
\(\Rightarrow\) ΔABC = ΔCDA (g.c.g) (đpcm)
2) Chứng minh tương tự ta có: ΔCDA = ABC (g.c.g)
\(\Rightarrow\) AB = CD ( 2 cạnh tương ứng) (đpcm)
3) Mình sửa lại chỗ AE = AC là AE = AB đó nha, bn ghi nhầm đề!!!
Ta có hình vẽ sau:
Xét ΔABC và ΔAFE có:
AE = AB (gt)
\(\widehat{A_1}\) = \(\widehat{A_2}\) (đối đỉnh)
AF = AC (gt)
\(\Rightarrow\) ΔABC = ΔAFE(c.g.c) (đpcm)
Bạn áp dụng trường hợp bằng nhau cạnh - góc - cạnh của tam giác rồi chứng minh nha
bài 1 cho tam giác ABC ,M là trung điểm BC,N là một điểm trong tam giác sao cho NB=NC,chứng minh
a, tam giác NMB= tam giác NMC
b, góc MBN=MCN
bài 2 cho tứ giác ABCD thỏa mãn AB=CD,AD=BC, chứng minh
a, tam giác ABC=tam giác CDA
b,AB//CD và AD//BC
bài 3 cho tam giác ABC có AB=AC lấy 2 điểm D, E thuộc cạnh BC sao cho AD=DE=EC biết AD=AE
a, chứng minh EAB=DAC
b, gọi M là trung điểm của BC .chứng minh AM là tia phân giác của DAE
c, giả sử DAE= 60 độ. tính các góc còn lại của tam giác DAE
Cho tam giác ABC vuông tại A(AB<AC), vẽ đường cao AH (H thuộc BC)
a) Chứng minh tam giác ACH đồng dạng với tam giác BCA
b) Trên AC lấy điểm E sao cho AB=AE. Vẽ ED vuông góc bới BC (D thuộc BC). Chứng minh CE×CA=CD×CB
c) Chứng minh AH=HD
d) Chứng minh AD×AB=AE×BD + AB×DE
Hình thang ABCD(AB//CD) có AB=a, BC=b, CD=c, AD=d. các tia phân giác góc A và D cắt nhau tại E. các tia phân giác góc B và góc C cắt nhau tại F. gọi M, N là trung điểm của AD, BC. a. Chứng minh tam giác AED vuông. b. Chứng minh rằng nếu E trùng với F thì a+b=c+d.
cho hình thang abcd (ab//cd,ab<cd).hai tia phan giác củ hai góc c và d cắt nhau tại k thuộc đáy ab . chứng minh : a, tam giác adk cân tại a, tam giác bkc cân tại b. b,ad bc=ab
a) Ta có: \(\widehat{AKD}=\widehat{KDC}\)(hai góc so le trong, AK//CD)
mà \(\widehat{ADK}=\widehat{KDC}\)(DK là tia phân giác của \(\widehat{ADC}\))
nên \(\widehat{AKD}=\widehat{ADK}\)
hay ΔAKD cân tại A
Ta có: \(\widehat{BKC}=\widehat{KCD}\)(hai góc so le trong, BK//CD)
mà \(\widehat{KCD}=\widehat{BCK}\)(CK là tia phân giác của \(\widehat{BCD}\))
nên \(\widehat{BKC}=\widehat{BCK}\)
hay ΔBKC cân tại B
Cho tam giác ABC. Vẽ đoạn thẳng CD // AB và AB=CD (D cùng phía với A đối với BC). Chứng minh:
a) AD = BC
b) AD // BC
c) tam giác AOD= tam giác COB( Với O là giao điểm của AC và BD)
Bài 7: Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC; trên tia đối của tia MA lấy điểm D sao cho MA=MD.
a) Chứng minh: Tam giác AMB = tam giác DMC ; AB = DC ; AB//DC ; ^ACD = 90 độ
b) Chứng minh: tam giác BCA = tam giác DAC ; BC = AD
c) Chứng minh: AM = 1/2 BC
AM BC
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: AB//DC và AB=DC; \(\widehat{ACD}=90^0\)
b:
Ta có: ABDC là hình chữ nhật
nên AD=BC
XétΔBCA và ΔDAC có
BC=DA
CA chung
BA=DC
Do đó: ΔBCA=ΔDAC
a: Xét ΔAMB và ΔDMC có
MA=MD
MB=MC
Do đó: ΔAMB=ΔDMC
Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
mà
nên ABDC là hình chữ nhật
Suy ra: AB//DC và AB=DC;
b:
Ta có: ABDC là hình chữ nhật
nên AD=BC
XétΔBCA và ΔDAC có
BC=DA
CA chung
BA=DC
Do đó: ΔBCA=ΔDAC
Cho tam giác ABC có AB= AC. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD = AE
a) Chứng minh BE = CD
b) Gọi O là giao điểm của BE và CD. Chứng minh rằng tam giác BOD = tam giác COE
c) Chứng minh AO là tia phân giác góc A
d) AO cắt BC tại H, chứng minh AH vuông góc BC
AI GIẢI NHANH VÀ ĐÚNG MIK SẼ TICK
Cm: a) Xét t/giác ABE và t/giác ACD
có: AB = AC (gt)
\(\widehat{A}\) :chung
AE = AD (gt)
=> t/giác ABE = t/giác ACD (c.g.c)
=> BE = CD (2 cạnh t/ứng)
b)Ta có: AD + DB = AB
AE + EC = AC
mà AD = AE (gt) ; AB = AC (gt)
=> BD = EC
Ta lại có: \(\widehat{ADC}+\widehat{CDB}=180^0\) (kề bù)
\(\widehat{AEB}+\widehat{BEC}=180^0\)(kề bù)
mà \(\widehat{ADC}=\widehat{AEB}\)(vì t/giác ABE = t/giác ACD)
=> \(\widehat{BDC}=\widehat{BEC}\)
Xét t/giác BOD và t/giác COE
có: \(\widehat{DBO}=\widehat{OCE}\) (vì t/giác ABE = t/giác ACD)
BD = EC (cmt)
\(\widehat{BDO}=\widehat{OEC}\) (cmt)
=> t/giác BOD = t/giác COE (g.c.g)
c) Xét t/giác ABO và t/giác ACO
có: AB = AC (gT)
OB = OC (vì t/giác BOD = t/giác COE)
AO : chung
=> t/giác ABO = t/giác ACO (c.c.c)
=> \(\widehat{BAO}=\widehat{CAO}\) (2 góc t/ứng)
=> AO là tia p/giác của \(\widehat{A}\)
d) Xét t/giác ABH và t/giác ACH
có: AB = AC (gt)
\(\widehat{BAH}=\widehat{CAH}\)(cmt)
AH : chung
=> t/giác ABH = t/giác ACH (c.g.c)
=> \(\widehat{BHA}=\widehat{CHA}\) (2 góc t/ứng)
Mà \(\widehat{BHA}+\widehat{CHA}=180^0\) (kề bù)
=> \(\widehat{BHA}=\widehat{CHA}=90^0\) => AH \(\perp\)BC (Đpcm)
Cho tam giác ABC, trên nửa mặt phẳng bờ AC không chứa điểm B vẽ đoạn AD//BC và AD=BC. a/Chứng minh tam giác ADC bằng tam giác CBA, suy ra AB//CD. b/Gọi H;O;K lần lượt là trung điểm của AB;AC;CD. Chứng minh tam giác AOH bằng tam giác COK. c/Chứng minh O là trung điểm của HK
Cho hình thang ABCD ( AB//CD ). GọiE,F lần lượt là trung điẻm của AD và BC . Các đường phân giác của góc A và B cắt È theo thứ tự ở I và K
a) chứng minh tam giác AIE và tam giác BKF cân
b)chứng minh tam giác AID và tam giác KBC vuông
c) chứng minh IE=1/2 AD và KF=1/2 BC
d) cho AB=5 cm, CD=18cm, AD=6cm, BC=7cm. Tính độ dài IK
Bn ơi, bài này bn giải dc chưa ah? Cho mk xin bài làm dc k ah?