Tìm GTNN của biểu thức C=3x^2+6x-1
Tìm GTNN của biểu thức :
C = 3x2 - 6x - 1
Bài làm:
Ta có: \(C=3x^2-6x-1\)
\(C=3\left(x^2-2x-\frac{1}{3}\right)\)
\(C=3\left(x^2-2x+1\right)-4\)
\(C=3\left(x-1\right)^2-4\ge-4\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(3\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy \(Min_C=-4\Leftrightarrow x=1\)
C = 3x2 - 6x - 1
= 3( x2 - 2x + 1 ) - 4
= 3( x - 1 )2 - 4
\(3\left(x-1\right)^2\ge0x\Rightarrow\forall3\left(x-1\right)^2-4\ge-4\)
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinC = -4 <=> x = 1
\(C=3x^2-6x-1=3\left(x-1\right)^2-4\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow3\left(x-1\right)^2-4\ge-4\)
Dấu "=" xảy ra \(\Leftrightarrow3\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy minC = - 4 <=> x = 1
Tìm GTNN của biểu thức A= x^2-6x+10; B= 3x^2-12x+1; Tìm GTLN của biểu thức C= -x^2+2x+5; D= 4x-x^2; E = x.(x-3)(x-4)(x-7)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
tìm giá trị của x để biểu thức có GTNN
a) 2x^2 - x + 1
b) 3x^2 - 6x
c) 2/3x^2 + 4/3x
Tìm GTNN của các biểu thức sau
A=\(\dfrac{2}{6x-5-9x^2}\)
B=\(\dfrac{4x^2-6x+3}{2x^2-3x+2}\)
C=\(\dfrac{3x^2-8x+6}{x^2-2x+1}\)
GIÚP MÌNH 3 CÂU NÀY VỚI MÌNH CẢM ƠN!!!
Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!
a:6x-5-9x^2
=-(9x^2-6x+5)
=-(9x^2-6x+1+4)
=-(3x-1)^2-4<=-4
=>A>=2/-4=-1/2
Dấu = xảy ra khi x=1/3
b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)
2x^2-3x+2=2(x^2-3/2x+1)
=2(x^2-2*x*3/4+9/16+7/16)
=2(x-3/4)^2+7/8>=7/8
=>-1/2x^2-3x+2<=-1:7/8=-8/7
=>B<=-8/7+2=6/7
Dâu = xảy ra khi x=3/4
Tìm GTNN của các biểu thức sau:
a,A= x^2+6x+11
b,B= x^2+3x-5
c,C= 9x^2-12x+2021
\(A=\left(x+3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=-3\\ B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{29}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{29}{4}\ge-\dfrac{29}{4}\\ B_{min}=-\dfrac{29}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ C=\left(9x^2-12x+4\right)+2017=\left(3x-2\right)^2+2017\ge2017\\ C_{min}=2017\Leftrightarrow x=\dfrac{2}{3}\)
Tìm GTNN của biểu thức
B=4x^2+4x-6
C=x^2+6x+11
D=x^2-3x+1
\(4x^2+4x+6\)
\(=\left(2x\right)^2+2.2x.1+1+5\)
\(=\left(2x+1\right)^2+5\ge5\)
\(Min=5\Leftrightarrow2x+1=0\Rightarrow x=\frac{-1}{2}\)
\(x^2+6x+11\)
\(=x^2+2.x.3+9+2\)
\(=\left(x+3\right)^2+2\ge2\)
\(Min=2\Leftrightarrow x+3=0\Rightarrow x-3\)
\(x^2-3x+1\)
\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{5}{4}\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\le\frac{-5}{4}\)
\(MIn=\frac{-5}{4}\Leftrightarrow x+\frac{3}{2}=0\Rightarrow x=\frac{-3}{2}\)
B = 4x2 + 4x - 6 = (2x)2 + 2.2.x + 1 - 7 = (2x + 1)2 - 7 \(\ge\)-7
Vậy MinB = -7 khi 2x + 1 = 0 => x = -1/2
C = x2 + 6x + 11 = x2 + 2.3.x + 9 + 2 = (x + 3)2 + 2 \(\ge\)2
Vậy MinC = 2 khi x + 3 = 0 => x = -3
D = x2 - 3x + 1 \(=x^2-2.\frac{3}{2}.x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+1=\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Vậy MinD = -5/4 khi x - 3/2 = 0 => x = 3/2
bài a của o0o I am a studious person o0o có lẽ sai
\(B=4x^2+4x-6=\left(4x^2+4x+1\right)-7=\left(2x+1\right)^2-7\)
có:\(\left(2x+1\right)^2\ge0\)
vậy GTNN của B = -7 tại x = -1/2
Tìm GTLN ( hoặc GTNN ) của biểu thức sau: \(\frac{6x-2}{3x^2+1}\)
1. Tìm GTNN của biểu thức :
A = 4x2 - 4x + 5 ; B = 3x2 + 6x - 1
2. Tìm GTLN của biểu thức :
A = 10 + 6x - x2 ; B = 7 - 5x - 2x2
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4
Tìm giá trị( LN ) giá trị nhỏ nhất ( gtnn) của các biểu thức sau:
A) A= x^2+3x+1
B) B= 2x^2+6x+y^2+2xy+12
C) C= 2x-x^2
\(A=\left(x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{5}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\\ A_{min}=-\dfrac{5}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ B=\left(x^2+2xy+y^2\right)+\left(x^2+6x+9\right)+3\\ B=\left(x+y\right)^2+\left(x+3\right)^2+3\ge3\\ B_{min}=3\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\\ C=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\\ C_{max}=1\Leftrightarrow x=1\)