Tim các số x, y, z thuộc Q biết (x+y) :(5-z) :(y+z) :(9+y) =3:1:2:5
Giúp mình nhé
Mình đang gấp
Tìm các số hữu tỉ x,y,z biết rằng:
x(x+y+z)=-5; y(x+y+z)=9; z(x+y+z)=5
Giúp mình với mình đang cần gấp
Ta có :*x(x+y+z) = - 5 (1)
* y(x+y+z) = 9 (2)
* z(x+y+z)=5 (3)
Từ (1) ; (2) và (3) , ta có :
x(x+y+z) + y(x+y+z) + z(x+y+z) = -5 + 9 + 5
Dựa vào tính chất phân phối của phép nhân đối với phép cộng , ta có :
(x+y+z) . (x+y+z) = 9
\(\Rightarrow\left(x+y+z\right)^2=9\)
\(\Rightarrow x+y+z=3\) hoặc x +y+z=-3
\(-\) TRƯỜNG HỢP : x+y+z =3 :
* từ (1) có : x(x+y+z=3 ) = -5 và x+y+z=3 => x = \(\frac{x\left(x+y+z\right)}{x+y+z}=-\frac{5}{3}\)
* từ (2) có : y(x+y+z) =9 và x+y+z=3 \(\Rightarrow y=\frac{y\left(x+y+z\right)}{x+y+z}=\frac{9}{3}=3\)
* từ (3) có : z(x+y+z) = 5 và x+y+z=3 \(\Rightarrow z=\frac{z\left(x+y+z\right)}{x+y+z}=\frac{5}{3}\)
\(-\) TRƯỜNG HỢP x +y+z=-3 :
* từ (1) có x(x+y+z=3 ) = -5 và x+y+z=-3 \(\Rightarrow x=\frac{x\left(x+y+z\right)}{x+y+z}=\frac{-5}{-3}=\frac{5}{3}\)
* từ (2) có : y(x+y+z) =9 và x+y+z=-3 \(\Rightarrow y=\frac{y\left(x+y+z\right)}{x+y+z}=\frac{9}{-3}=-3\)
* từ (3) có : z(x+y+z) =5 và x+y+z=-3 \(\Rightarrow z=\frac{z\left(x+y+z\right)}{x+y+z}=\frac{5}{-3}\)
Đảm bảo đúng 100% . K MIK NHA MN!
Đặt
\(x.\left(x+y+z\right)=-5\) (1)
\(y.\left(x+y+z\right)=9\) (2)
\(x.\left(x+y+z\right)=5\) (3)
Cộng (1);(2);(3) với nhau ta được
\(x.\left(x+y+z\right)+y.\left(x+y+z\right)+z.\left(x+y+z\right)=\left(x+y+z\right).\left(x+y+z\right)\)
\(=\left(x+y+z\right)^2=\left(-5\right)+9+5=9=3^2=\left(-3\right)^2\)
Suy ra \(x+y+z=3\)hoặc \(x+y+z=-3\)
Thay \(x+y+z=3\)vào (1) ta được \(x.3=-5\Rightarrow x=-\frac{3}{5}\)
Thay\(x+y+z=3\)vào (2) ta được \(y.3=9\Rightarrow y=3\)
Thay \(x+y+z=3\)vào (3) ta được \(z.3=5\Rightarrow z=\frac{3}{5}\)
Ta có \(\left(x;y;z\right)=\left(-\frac{3}{5};3;\frac{3}{5}\right)\)
Thay \(x+y+z=-3\)vào (1) ta được \(x.\left(-3\right)=05\Rightarrow x=\frac{3}{5}\)
Thay \(x+y+z=-3\)vào (2) ta được \(y.\left(-3\right)=9\Rightarrow y=-3\)
Thay \(x+y+z=-3\)vào (3) ta được \(z.\left(-3\right)=5\Rightarrow x=-\frac{3}{5}\)
Ta có \(\left(x;y;z\right)=\left(\frac{3}{5};-3;-\frac{3}{5}\right)\)
Vậy các cặp \(\left(x;y;z\right)\)thỏa mãn là : \(\left(-\frac{3}{5};3;\frac{3}{5}\right)\)và \(\left(\frac{3}{5};-3;-\frac{3}{5}\right)\)
nếu bn là người công tâm.bn nên chọn đáp án của mình vì mik trả lời trc vs đúng mà
Tìm x, y, z ϵ Q , biết x(x + y + z) = -5; y(x + y + z) = 9; z(x + y + z) = 5
Gíup mình với mình đang cần gấp!!! Cảm ơn các bạn nhiều!!!!
Ai giải được cho 100 like!!!!!!!!
Từ 3 phương trình trên
\(\left(x+y+z\right)=\dfrac{-5}{x}=\dfrac{9}{y}=\dfrac{5}{z}=\dfrac{-5+9+5}{x+y+z}=\dfrac{9}{x+y+z}\)
\(\Rightarrow\left(x+y+z\right)^2=9\Rightarrow\left(x+y+z\right)=\pm3\)
+ Với \(x+y+z=3\) Thay vào từng phương trình ta có
\(x=-\dfrac{5}{3};y=3;z=\dfrac{5}{3}\)
+ Với \(x+y+z=-3\) Thay vào từng phương trình có
\(x=\dfrac{5}{3};y=3;z=-\dfrac{5}{3}\)
tìm x, y,z biết :
1) x-1/3 = y-2/4 = z+7/5 và x+y-z = 8
2 ) x+1/3 = y+2/-4 = z-3/5 và 3x + 2y +42 = 47
làm nhanh giúp mình nhé
mình cần gấp
1: \(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}\)
mà x+y-z=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}=\dfrac{x-1+y-2-z-7}{3+4-5}=\dfrac{8-3-7}{2}=\dfrac{-2}{2}=-1\)
=>\(\left\{{}\begin{matrix}x-1=-1\cdot3=-3\\y-2=-1\cdot4=-4\\z+7=-1\cdot5=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-2\\y=-2\\z=-12\end{matrix}\right.\)
2: \(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}\)
mà 3x+2y=47-42=5
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}=\dfrac{3x+3+2y+4}{3\cdot3+2\left(-4\right)}=\dfrac{5+7}{9-8}=12\)
=>\(\left\{{}\begin{matrix}x+1=12\cdot3=36\\y+2=-12\cdot4=-48\\z-3=12\cdot5=60\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=35\\y=-48-2=-50\\z=60+3=63\end{matrix}\right.\)
Cho x+y+z=1
x^2+y^2+z^2=2
x^3+y^3+z^3=3
Tính x^5+y^5+z^5
Giúp mình với nhé mình đang cần gấp!!!
Tìm các số hữu tỉ x,y,z biết rằng:
x(x+y+z)=5 ; y(x+y+z)=9 ; z(x+y+z)=5
Các bạn giúp mình trả lời câu hỏi này nhé! Mình xin cảm ơn!!!
Tìm x y z biết biết
x/y=17/3,x+y=-60
2)x/19=y/21,2x-y=34
3)x2/9=y2/16,x2+y2=100
4)x/y=10/9,y/z=3/4 x-y+z=78
5)x/y=9/7,9/7=7/3x-y+z=-15
các bạn nhớ làm giúp mình mình đang cần gấp
1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)
=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)
Vậy ....
2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)
vậy ...
3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)
\(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)
=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)
Vậy ...
bài 4 : tìm x,y thuộc Z, biết
a) (x-5) ( y-7 ) =1
B) ( x+4 ) (y-2) = 2
C) (x+7) ( 5-y ) = -6
D) (12-x ) (6-y) = -2
Mọi người giải giúp mình nhé cảm ơn nhìu mình đang cần gấp
a tìm số nguyên x biết (x-5).(y-7)=1
(x-5).(y-7)=1 = 1.1 = -1.(-1)
TH1,
x-5 = 1, y-7 = 1
=> x = 6, y = 8
TH2
Cho x,y,z là ba số khác 0 thỏa mãn \(\frac{x.y}{x+y}+\frac{y.z}{y+z}+\frac{z.x}{z+x}\) ( với giả thiết các tỉ số có nghĩa). Tính giá trị biểu thức:
\(M=\frac{2020.x^2.y+2020.y^2.z+2020.z^2.x}{x^3+y^3+z^3}+\frac{2021.x^4.y+2021.y^4.z}{x^5+y^5}\)
giúp mình với mình đang cần gấp Pleaseeee :(
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)
Cho các số thực x,y,z thỏa mãn x+y+z=1 và \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
(x # -y ; y #-z ; z # -x)
GT cùa BT \(\frac{x^2}{y+x}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)là...
Các bạn giúp mình nhé mình đang cần gấp lắm.. Thanks!!! (Đáp án cũng dc)
cậu vào đường link này sẽ rõ:http://olm.vn/hoi-dap/question/794605.html