\(\sqrt{x^2-7}\) tìm điiều kiện xác định
tìm điều kiện xác định
\(\sqrt{x^2-2}\)
\(\sqrt{x^2-3x+7}\)
Tìm điều kiện xác định :
A=\(\frac{\sqrt{x+1}-1}{\sqrt{x^2-1}}-\frac{1}{\left(2-\sqrt{x}\right)x}\)
TL:
ĐKXĐ:\(\sqrt{x^2-1}>0\)
\(\Leftrightarrow x^2-1>0\Leftrightarrow x^2>1\Leftrightarrow x>1\)
Vậy...
\(\hept{\begin{cases}x+1\ge0\\x^2-1>0\\\left(2-\sqrt{x}\right)x\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge-1\\x>1,x< -1\\2-\sqrt{x}\ne0,x\ne0,x\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>1\\x\ne4\end{cases}}\)
cho A=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)
a, Tìm điều kiện xác định và rút gọn A
b, Tìm A khi x=\(4-2\sqrt{3}\)
c, Tìm x để A=\(\dfrac{1}{2}\)
d, Tìm x để A≥\(\dfrac{1}{2}\)
e, Chứng minh A>-5
g, Tìm xϵZ để AϵN
h, Tìm giá trị nhỏ nhất của A
\(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{Y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3+y}+\sqrt{xy^3}}\)
tìm điều kiện để bthuc xác định
rút gọn biểu thức
cho xy=6 xác định x,y để bthuc có GTNN
Cho phân thức A=\(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\)
a)Tìm điều kiện xác định của A
b)Tìm x để A=0
Mọi người ghi từng cách giải nha
Cảm ơn mọi người nhiều
a: ĐKXĐ: \(x\notin\left\{-1;3\right\}\)
b: \(A=\dfrac{3x\left(x+1\right)}{\left(x+1\right)\left(2x-6\right)}=\dfrac{3x}{2x-6}\)
Để A=0 thì 3x=0
hay x=0
Tìm điều kiện cần và đủ của tham số m để tập xác định của hàm số y = m - 2 x - x + 1 là một đoạn trên trục số.
A. m < - 2
B. m > 2
C. m > - 1 2
D. m > - 2
Hàm số y = m - 2 x - x + 1 xác định khi và chỉ khi m - 2 x ≥ 0 x + 1 ≥ 0 ⇔ x ≤ m 2 x ≥ - 1 .
Do đó tập xác định của hàm số y = m - 2 x - x + 1 là một đoạn trên trục số khi và chỉ khi m 2 > - 1 ⇔ m > - 2
Cho P= 2/(2x+3) + 3/(2x+1) - (6x+5)/(2x-3)*(2x+3)
a) tìm điều kiện xác định
b) rút gọn
c) tìm x để P=-1
d) tìm x để P<0
a, tìm điều kiện xác định của biểu thức :
A=\(\frac{2x+1}{\left(x^2+5x+6\right)\left(x^2+10x+24\right)-2x^2}\)
b Rút gọn biểu thức :B=\(\sqrt{x+2\sqrt{x-1}}\)+\(\sqrt{x-2\sqrt{x-1}}\) với x>1;x=1
A=\(\frac{8-x}{\left(x+2\right)\left(x-3\right)}\) +\(\frac{2}{x+2}\)
a) Tìm điều kiện của x để giá trị của phân thức A được xác định
Để phân thức A được xác định thì x khác -2 x khác 3
Mk có tâm rút gọn hộ bạn luôn rồi nè =))
a, ĐK : \(x\ne-2;3\)
b, \(A=\frac{8-x}{\left(x+2\right)\left(x-3\right)}+\frac{2}{x+2}\)
\(=\frac{8-x}{\left(x+2\right)\left(x-3\right)}+\frac{2\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}=\frac{8-x+2x-6}{\left(x+2\right)\left(x-3\right)}\)
\(=\frac{x-2}{\left(x-2\right)\left(x-3\right)}=\frac{1}{x-3}\)