Với giá trị nào của x để biểu thức sau có nghĩa:
a) √x-1\x+2
b) √(x-1)(x-2)
Bài 1 (2điểm)
1) Nêu điều kiện để √a có nghĩa ?
2) Áp dụng: Tìm x để các căn thức sau có nghĩa:
Bài 2: ( 3 điểm ): Rút gọn biểu thức
Bài 3 ( 4 điểm ) Cho biểu thức
(Với x > 0; x 1; x4)
a/ Rút gọn P.
b/ Với giá trị nào của x thì P có giá trị bằng 1/4
c/ Tính giá trị của P tại x = 4 + 2√3
d/ Tìm số nguyên x để biểu thức P có giá trị là số nguyên ?
Bài 4 : ( 1 điểm ): Cho
Tìm giá trị nhỏ nhất của A, giá trị đó đạt được khi x bằng bao nhiêu?
Bài 3: Cho biểu thức A =\(\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\)
a)Đặt điều kiện để biểu thức A có nghĩa; b)Rút gọn biểu thức A;
c)Với giá trị nào của x thì A< - 1
a) ĐKXĐ: \(x\ge0,x\ne1\)
b) \(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\sqrt{x}-1+\sqrt{x}=2\sqrt{x}-1\)
c) \(A=2\sqrt{x}-1< -1\Leftrightarrow2\sqrt{x}< 0\)(vô lý do \(2\sqrt{x}\ge0\forall x\))
Vậy \(S=\varnothing\)
Bài 3:
\(A=\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt[]{x}+1}\\ DKXD:x\ne1;x\ge0\\ A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\\ A=\sqrt{x}-1+\sqrt{x}\\ A=2\sqrt{x}+1\)
\(C.A< -1\Leftrightarrow2\sqrt{x}-1< -1\\ \Leftrightarrow2\sqrt{x}< 0\\ \Leftrightarrow x< 0\left(ktmdk\right)\\ =>BPTVN:S=\varnothing\)
Giúp mk với Bài 7: Xác định giá trị của biểu thức để các biểu thức sau có nghĩa: a) 5/(x - 2) b) (x - y)/(2x + 1) (x - 1)/(x ^ 2 + 1) d) (ax + by + c)/(xy - 3y)
a
Để biểu thức có nghĩa thì \(x-2\ne0\Rightarrow x\ne2\)
b
Để biểu thức có nghĩa thì \(2x+1\ne0\Rightarrow x\ne-\dfrac{1}{2}\)
c
Ủa câu c là (x-1)/(x^2+1) đúng không bạn:v
Để biểu thức có nghĩa thì \(x^2+1\ne0\)
Vì \(x^2\ge0\forall x\Rightarrow x^2+1>0\forall x\)
Vậy biểu thức có nghĩa với mọi giá trị x.
d
Để biểu thức có nghĩa thì \(xy-3y\ne0\Leftrightarrow y\left(x-3\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\ne0\\x-3\ne0\Rightarrow x\ne3\end{matrix}\right.\)
Vậy để biểu thức có nghĩa thì đồng thời \(y\ne0,x\ne3\)
a) \(\dfrac{5}{x-2}\)
Có nghĩa khi:
\(x-2\ne0\)
\(\Rightarrow x\ne2\)
b) \(\dfrac{x-y}{2x+1}\)
Có nghĩa khi:
\(2x+1\ne0\)
\(\Rightarrow2x\ne-1\)
\(\Rightarrow x\ne-\dfrac{1}{2}\)
c) \(\dfrac{x-1}{x^2+1}\)
Có nghĩa khi:
\(x^2+1\ne0\)
\(\Rightarrow x^2\ne-1\) (luôn đúng)
Vậy biểu thức được xác định với mọi x
d) \(\dfrac{ax+by+c}{xy-3y}=\dfrac{ax+by+c}{y\left(x-3\right)}\)
Có nghĩa khi:
\(y\left(x-3\right)\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}y\ne0\\x-3\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y\ne0\\x\ne3\end{matrix}\right.\)
Câu 1 :Cho 2 biểu thức
A=\(\sqrt{2x^2-3x+1}\) vá B=\(\sqrt{x-1}.\sqrt{2x-1}\)
a.Tìm x để A có nghĩa
b.Tìm x để B có nghĩa
c.Với giá trị nào của x thì A=B
d.Với giá trị nào của x thì chỉ A có nghĩa, còn B không có nghĩa
Câu 2: Biết \(x^2+y^2=117\)Tìm giá trị lớn nhất ,nhỏ nhất của biểu thức A = 2x+3y
Câu 1
a)
Để biểu thức A có nghĩa thì \(2x^2-3x+1\ge0\Leftrightarrow\left(x-1\right)\left(2x-1\right)\ge0\)
\(\Leftrightarrow x\ge1\)
b)
Để biểu thức B có nghĩa thì \(x-1\ge0;2x-1\ge0\Rightarrow x\ge1\)
c)
Với \(x\ge1\) thì biểu thức A luôn luôn bằng biểu thức B
d)
Vô lý vcl
Câu 2
Xài BĐT Bunhiacopski:
\(A^2=\left(2x+3y\right)^2=\left(2\cdot x+3\cdot y\right)^2\le13\left(x^2+y^2\right)=1521\)
\(\Rightarrow A\le39\)
Câu 1:
a) A=\(\sqrt{2x^2-3x+1}\)
ĐKXĐ: \(\orbr{\begin{cases}x\le\frac{1}{2}\\x\ge1\end{cases}}\)
b) B=\(\sqrt{x-1}\cdot\sqrt{2x-1}\)
ĐKXĐ:\(\orbr{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\)
=>\(x\ge1\)
c) Với \(x\ge1\)thì A=B đc xác định
d) Với \(x\le\frac{1}{2}\)thì A có nghĩa,B không có nghĩa
a) Tính \(y = {2^x}\) khi x lần lượt nhận các giá trị - 1; 0; 1. Với mỗi giá trị của x có bao nhiêu giá trị của \(y = {2^x}\) tương ứng?
b) Với những giá trị nào của x, biểu thức có nghĩa?
a: Khi x=-1 thì \(y=2^{-1}=\dfrac{1}{2}\)
Khi x=0 thì \(y=2^0=1\)
Khi x=1 thì \(y=2^1=2\)
Với mỗi giá trị của x thì chỉ có 1 giá trị 2x tương ứng
b: Biểu thức y=2x có nghĩa với mọi x
\(A=\frac{4}{x+2}+\frac{2}{x-2}+\frac{6-5x}{x^2-4}\)
a) ĐKXĐ : x ≠ ±2
\(=\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{6-5x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4x-8+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}=\frac{x+2}{\left(x-2\right)\left(x+2\right)}=\frac{1}{x-2}\)
b) Để A = 1 => \(\frac{1}{x-2}=1\)=> x - 2 = 1 => x = 3 ( tm )
c) Để A > 1 => \(\frac{1}{x-2}>1\)
=> \(\frac{1}{x-2}-1>0\)
=> \(\frac{1}{x-2}-\frac{x-2}{x-2}>0\)
=> \(\frac{1-x+2}{x-2}>0\)
=> \(\frac{-x+3}{x-2}>0\)
Xét hai trường hợp
1. \(\hept{\begin{cases}-x+3>0\\x-2>0\end{cases}}\Rightarrow\hept{\begin{cases}-x>-3\\x>2\end{cases}}\Rightarrow\hept{\begin{cases}x< 3\\x>2\end{cases}}\Rightarrow2< x< 3\)
2. \(\hept{\begin{cases}-x+3< 0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}-x< -3\\x< 2\end{cases}}\Rightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}}\)( loại )
Vậy với 2 < x < 3 thì A > 1
d) Để A nguyên => \(\frac{1}{x-2}\)nguyên
=> 1 ⋮ x - 2
=> x - 2 ∈ Ư(1) = { ±1 }
=> x ∈ { 1 ; 3 } thì A nguyên
a) \(ĐKXĐ:x\ne\pm2\)
\(A=\dfrac{4}{x+2}+\dfrac{2}{x-2}+\dfrac{6-5x}{x^2-4}\)
\(\Leftrightarrow A=\dfrac{4\left(x-2\right)+2\left(x+2\right)+6-5x}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\dfrac{4x-8+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\dfrac{1}{x-2}\)
b) Để A = 1
\(\Leftrightarrow\dfrac{1}{x-2}=1\)
\(\Leftrightarrow x-2=1\)
\(\Leftrightarrow x=3\) (tm)
Vậy ...
c) Để A > 1
\(\Leftrightarrow\dfrac{1}{x-2}>1\)
\(\Leftrightarrow\dfrac{1}{x-2}-1>0\)
\(\Leftrightarrow\dfrac{1-x+2}{x-2}>0\)
\(\Leftrightarrow\dfrac{-x+3}{x-2}>0\)
\(\Leftrightarrow\left(3-x\right)\left(x-2\right)>0\)
Trường hợp \(\left\{{}\begin{matrix}3-x>0\\x-2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\)
\(\Leftrightarrow2< x< 3\) (tm)
Trường hợp \(\left\{{}\begin{matrix}3-x< 0\\x-2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>3\\x< 2\end{matrix}\right.\) (ktm)
Vậy ...
d) Để A nguyên
\(\Leftrightarrow\dfrac{1}{x-2}\in Z\)
\(\Leftrightarrow x-2\inƯ\left(1\right)=\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow x\in\left\{1;3;0;4\right\}\)
Vậy ...
1. Xét biểu thức B= \(\sqrt{x+1}\)
a) Với giá trị nào của x thì B có nghĩa?
b) Với giá trị nào của x thì B>2? \(0\le B\le3\)
2. Xét biểu thức A= \(2004+\sqrt{2003-x}\)
a) Với giá trị nào của x thì A có nghĩa?
b) Với giá trị nào của x thì A đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
Thời gian có hạn copy cái này hộ mình vào google xem nha: :
Link : https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách
OK<3
1a/ Để B có nghĩa thì x+1≥0 => x≥-1
b/ B>2
=> \(\sqrt{x+1}>2\)
\(\Rightarrow x+1>4\Rightarrow x>3\)
2a/ Để A có nghĩa thì 2003-x≥0 => x≤2003
b/ Ta có \(\sqrt{2003-x}\ge0\forall x\)
=>A≥2004
MinA=2004 khi x=2003
Chúc bạn học tốt!
AE Hợp Lực nên thôi việc trả lời kiểu đó lại đi
cho biểu thức A=\(\sqrt{\left[3x+1\right]\left[x-2\right]}\)và B=\(\sqrt{3x+1}.\sqrt{x-2}\)với giá trị nào của x thì A=B,với giá trị nào của x thì chỉ A có nghĩa còn B không có nghĩa