CMR : (7.n)1992 chia hết cho 49 với n thuộc N
1 CMR
a) (n+20152016)+(n+20152016) chia hết cho 2 với mọi n thuộc N
b) n2+5n+7 không chia hết cho 2 với mọi n thuộc N
c)n(n+1)+1 không chia hết cho 5 với mọi n thuộc N
d)n2+n+2 không chia hết cho 15 với mọi n thuộc N
e)n2+n+2 không chia hết cho 3 với mọi n thuộc N
f)n2+n+1 không chia hết cho 5 với mọi n thuộc N
2 CMR
a)n2+11n+39 không chia hết cho 49 với mioj n thuộc N
b)n2-n+10 không chia hết cho 169 với mọi n thuộc N
c)n2+3n+5 không chia hết cho 121 với mọi n thuộc N
d)4n2+8n-6 không chia hết cho 25 với mọi n thuộc N
e)n2-5n-49 không chia hết cho 169 với mọi n thuộc N
Cmr: n^2 - 5n - 49 không chia hết cho 169 với mọi n thuộc Z
CMR với mọi n thuộc Z thì:
a. (n-1)*(n+2)+12 không chia hết cho 9
b. (n+2)*(n+9)+21 không chia hết ch 49
Cho x,y thuộc N thỏa mãn (3x+5)(x+4) chia hết cho 7. CMR (3x+5)(x+4) chia hết cho 49.
Giả sử 3x+5y3x+5y⋮ 77
⇒ 3x+5y−3(x+4y)3x+5y−3(x+4y)⋮ 77
⇔ −7y−7y⋮ 77
⇒ Luôn đúng
⇒ 3(x+4y)3(x+4y)⋮ 77
⇒ x+4yx+4y⋮ 77
⇒ (3x+5y)(x+4y)(3x+5y)(x+4y)⋮ 7.77.7
hay (3x+5y)(x+4y)(3x+5y)(x+4y)⋮ 4949
Giả sử x+4yx+4y⋮ 77
⇒ 3(x+4y)3(x+4y)⋮ 77
⇒ 3(x+4y)−3x−5y3(x+4y)−3x−5y⋮ 77
⇒ 7y7y⋮ 77
⇒ 3x+5y3x+5y⋮ 77
⇒ (3x+5y)(x+4y)(3x+5y)(x+4y)⋮ 7.77.7
hay (3x+5y)(x+4y)(3x+5y)(x+4y)⋮ 49
CMR: A= 7n + 3n-1 chia hết cho 9 (với mọi n thuộc N)
CMR: B= 4n + 15n-1 chia hết cho 9 (với mọi n thuộc N*)
Cmr
a)\(3n^4-14n^3+21n^2-10n\) chia hết cho 24 với n thuộc Z
b)\(n^2+11n+39\) chia hết cho 49 với n thuộc Z+
giúp mk với
CMR A= (n+1).(n+8) +21 ko chia hết 49(với mọi n thuộc stn)
A = n^2 + n + 8n + 8 + 21
= n^2 + 9n + 29
4A = 4n^2 + 36n + 116 = (2n+9)^2 + 35
Gia sử A chia hết cho 49 => 4A chia hết cho 49
=>A chia hết cho 7 => (2n+9)^2 + 35 chia hết cho 7
=> (2n+9)^2 chia hết cho 7 (vì 35 chia hết cho 7)
=> 2n+9 chia hết cho 7 => (2n+9)^2 chia hết cho 49 ( vì 7 nguyên tố)
=> 4A= (2n+9)^2 + 35 ko chia hết cho 49 ( mâu thuẫn giả sử) => A ko chia hết cho 49
Vậy A ko chia hết cho 49
1. CMR: 7^7^7^7^7^7 - 7^7^7^7 chia hết cho 10
2. CMR: 2^3^4n-1 + 3 chia hết cho 19 với mọi n thuộc N
Chứng minh rằng: (7n)1992 chia hết cho 49.(voi n thuoc N)
Có 72 chia hết 49. =>71992 chia hết 49 =>(7n)1992 chia hết 49 với mọi n thuộc N => đpcm