Tìm \(\overline{ab}\)biết:
\(\overline{ab}=\overline{ba}.3+13\)
Bài 3: Tìm các chữ số a, b, c biết:
a) \(\overline{12ab}=\overline{ab}.26\)
b) \(\overline{7ab}=20.\overline{ab}+35\)
c) \(\overline{2ab2}=36.\overline{ab}\)
d) \(\overline{abc3}-1992=\overline{abc}\)
e*) \(\overline{ab}+\overline{bc}+\overline{ca}=\overline{abc}\)
chứng minh rằng a) \(\overline{abcabc}\) chia hết cho 7, 11, 13
b) \(\overline{ab}-\overline{ba}\) chia hết cho 9
c) \(\overline{abc}-\overline{cba}\) chia hết cho 99
a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)
b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)
c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)
Tìm số có 2 chữ số ab biết:
a) \(\overline{ab}\) + \(\overline{ba}\) = 132 và \(\overline{ab}\) - \(\overline{ba}\) = \(\overline{3}\)*
b) \(\overline{ab}\) : (a - b) = 11 (dư 4) và \(\overline{ab}\) chia hết cho 9
c) \(\overline{ab}\) : (a + b) = 8 (dư 2)
d) 2 = 2 x \(\overline{ba}\) + 2
Tìm số có 2 chữ số\(\overline{ab}\)và chữ số * biết :
\(\overline{ab}\)chia 5 dư 1 và \(\overline{ab}\)-\(\overline{ba}\)=3*
Giúp tui ik
ta có :ab/5 dư 1 => b=1 hoặc 6
Trường hợp 1 :a1-1a=3* => a=5 ;*=6 (thỏa mãn)
Trường hợp 2 :a6-6a=3* ta thấy không có số a nào thỏa mãn
Vậy ab=51 ;*=6
Trong hai phép tính sau, với a - b = 1 ;
( ab + 13 ) x cd = 2700
( ba +13) x cd
Hãy tìm a, b, c , d
Ta thấy 2700 là có 2 số 0 thì phải nhân cho 100
=> ( ab + 13) = 100 => ab = 87
Vậy ta tìm được a=8 và b=7 thỏa mãn điều kiện a-b =1
=> 100 x cd = 2700 => cd= \(\frac{2700}{100}\)= 27
Vậy ta tìm được c=2 và d=7
Vậy a=8, b=7 ,c =2 và d=7
Còn ( ba + 13) x cd thì a=3, b= 2, c= 7 và d=5
Tìm số tự nhiên \(\overline{ab}\), biết: \(1+2+3+...+\overline{bc}=\overline{abc}\)
tìm \(\overline{abcde}\) biết \(\overline{abcde}\) = 2.\(\overline{ab}\).\(\overline{cde}\)
Đáp án:
hoặc
Giải thích các bước giải:
Do
nhỏ nhất là
Ước dương của
Do lẻ và
Vậy số thoả mãn là hoặc
Bài 4 (3.0 điểm) : Tìm số nguyên tố \(\overline{ab}\) ( a > b > 0 ), sao cho \(\overline{ab}-\overline{ba}\) là số chính phương.
Ta có : \(\overline{ab}-\overline{ba}=\) (10a +b) \(-\) (10b +a) \(=\) 10a + b \(-\) 10b \(-\) a \(=\) 9a \(-\) 9b
\(=\) 9(a\(-\)b) \(=\) 32(a\(-\)b)
=> a, b ∉ {1;2;3;4;5;6;7;8;9} => 1 ≤ a- b ≤ 8
Để \(\overline{ab}-\)\(\overline{ba}\) là số chính phương thì a – b = 1; 4
+) a – b = 1 (mà a > b) ta có các số \(\overline{ab}\) là : 98 ; 87 ; 76; 65; 54 ; 43; 32; 21
Vì \(\overline{ab}\) là số nguyên tố nên chỉ có số 43 thoả mãn
+) a – b = 4 (mà a > b) ta có các số \(\overline{ab}\) là : 95 ; 84 ; 73; 62; 51
Vì \(\overline{ab}\) là số nguyên tố nên chỉ có số 73 thoả mãn
Vậy có hai số thoả mãn điều kiện bài toán là 43 và 73
Cho ab + ba =132
Biết a-b=4 . Tìm ab
Ta có:
a=4;b=0
a=5;b=1
a=6;b=2
a=7;b=3
a=8;b=4
a=9;b=5
Mà:40+04=44(loại)
51+15=66(loại)
62+26=88(loại)
73+37=110(loại)
84+48=132(chọn)
95+59=154(loại)
Vậy ab=84
ab + ba = 132
( a + b ) x 11 = 132
a + b = 132 : 11
a + b = 12
Mà a - b = 4
=> a = ( 12 + 4 ) : 2 = 8 ; b = 8 - 4 = 4
=> ab = 84
Vậy số cần tìm là 84.
ab + 44=132
ab =132 - 44
ab= 88
nha mk trả lời đầu tiên đó