chứng minh 4n3 - 6n2 +3n -17 không chia hết cho 125
CMR: 4n³–6n²+3n -17 không chia hết cho 125 với mọi n \(\in\)N
Chứng minh:
\(10^n+5^3⋮9\)
\(43^{43}-17^{17}⋮10\)
555..5 (2n chữ số 5) chia hết cho 11 nhưng không chia hết cho 125
b/ Câu hỏi của aiahasijc - Toán lớp 6 - Học toán với OnlineMath
câu 1:
a) 3n chia hết 5-2n
b) 4n+3 chia hết 2n+6
câu 2:
a) cho a-5b chia hết cho 17. chứng minh: 10a+b chia hết cho 17
b) cho biết a+4b chia hết cho 13. chứng minh 10a+b chia hết cho 13
chứng minh rằng
3n + 17 chia hết cho n - 2
CMR : P = \(4n^3+6n^2+3n-17\) không chia hết cho 125 với mọi n thuộc N
+\(n=5k\)
\(P=4.5k^3+6.5k^2+3.5k-17\) không chia hết cho 5
+\(n=5k+1\)
\(P=4\left(5k+1\right)^3+6\left(5k+1\right)^2+3\left(5k+1\right)-17\)
\(=4\left(125k^3+75k^2+15k+1\right)+6\left(25k^2+10k+1\right)+15k+3-17\)
\(=4.125k^3+18.25k^2+135k-4\)không chia hết cho 5
+ tương tự ...........
Mình mới chỉ có thế thôi , chưa nghĩa ra cách khác ..
Tìm a để đa thức P(x) chia hết cho đa thức Q(x) biết
P(x) = x4-5x2+4x+a
Q(x) = 2x+1
b. Chứng minh rằng:
n3 + 6n2 + 8n chia hết cho 48 với mọi n chẵn
a, Để \(P\left(x\right)⋮Q\left(x\right)\Leftrightarrow P\left(-\dfrac{1}{2}\right)=\dfrac{1}{16}-\dfrac{5}{4}-2+a=0\Leftrightarrow a=\dfrac{51}{16}\)
b, \(n^3+6n^2+8n=n\left(n^2+6n+8\right)=n\left(n+2\right)\left(n+4\right)\)
Với n chẵn thì 3 số này là 3 số chẵn lt nên chia hết cho \(2\cdot4\cdot6=48\)
a, P(x):Q(x)=1/2x^3-1/4x^2-19/8x+51/16(dư a-51/16)=>Để P(x) chia hết cho Q(x) thì a-51/16 phải bằng 0 => a=51/16
b, n3 + 6n2 + 8n= n(n2 +6n +8)
= n(n2 + 2n + 4n + 8)
= n[ n(n + 2) + 4(n + 2) ]
= n(n + 2)(n + 4)
Vì n là số chẵn nên đặt n=2k (k thuộc Z) ta được:
2k(2k + 2)(2k + 4)
=8k(k + 1)(k +2)
Vì k, k+1, k+2 là ba số tự nhiên liên tiếp nên có một sò chia hết cho 2 và một sồ chia hết cho 3 => k(k+1)(k+4)⋮6
=> 8k(k+1)(k+4)⋮48 (đpcm)
Chứng minh 555.....5 (2n cs 5) chia hết cho 11 nhưng không chia hết cho 125
Ta có: 125=25.5 => 555..5 phải phân tích ta thành tích 2 số 1 số chia 5 cho 5, số còn là chia hết cho 25. Ta có 5555...5= 111...1. Mà 111...1 có tận cùng là 11 k chia hết cho 25 => 555...5 k chia hết cho 25. Ta có tổng các chữ số hàng lẻ trừ tổng các chữ số hằng chẵn chia hết cho 11 thì số đó chia hết cho 11 mà 555...555 có 2n chữ số => số chữ số hàng lẻ = số chữ số hàng chẵn => hiệu =0 chia hết cho 11( đpcm)
Chứng minh rằng với mọi số tự nhiên N thì 11*5^2n + 2^3n+2 + 2^3n+1 chia hết cho 17
Đặt \(A=11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)
\(A=11\cdot25^n+8^n\cdot4+8^n\cdot2\)
\(A=17\cdot25^2-6\left(25^n-8^n\right)\)
\(A=17\cdot25^n-6\left(25-8\right)\left(25^{n-1}+25^{n-2}\cdot8+..........+8^{n-2}\cdot25+8^{n-1}\right)\)\(A=17\cdot25^n-17\cdot6\cdot\left(25^{n-1}+25^{n-2}\cdot8+..........+8^{n-2}\cdot25+8^{n-1}\right)\)\(\Rightarrow A⋮17\)
Chứng minh rằng với n không chia hết cho 3 thì32n+3n+1 chia hết cho 13