Nêu một số cách nhẩm nghiệm của phương trình bậc cao
3. Viết hệ thức Vi-et đối với các nghiệm của phương trình bậc hai
a x 2 + b x + c = 0 ( a ≠ 0 )
Nêu điều kiện để phương trình a x 2 + b x + c = 0 (a ≠ 0) có một nghiệm bằng 1. Khi đó, viết công thức nghiệm thứ hai. Áp dụng: nhẩm nghiệm của phương trình
1954 x 2 + 21 x – 1975 = 0
Nêu điều kiện để phương trình a x 2 + b x + c = 0 ( a ≠ 0 ) có một nghiệm bằng -1. Khi đó, viết công thức nghiệm thứ hai. Áp dụng: nhẩm nghiệm của phương trình
2005 x 2 + 104 x – 1901 = 0
Viết hệ thức Vi-et đối với các nghiệm của phương trình bậc hai
ax2 + bx + c = 0 (a ≠ 0)
Nêu điều kiện để phương trình ax2 + bx + c = 0 (a ≠ 0) có một nghiệm bằng 1. Khi đó, viết công thức nghiệm thứ hai. Áp dụng: nhẩm nghiệm của phương trình
1954x2 + 21x – 1975 = 0
Nêu điều kiện để phương trình ax2 + bx + c = 0 (a ≠ 0) có một nghiệm bằng -1. Khi đó, viết công thức nghiệm thứ hai. Áp dụng: nhẩm nghiệm của phương trình
2005x2 + 104x – 1901 = 0
1. Thế nào là hai phương trình tương đương? Nêu các quy tắc biến đổi tương đương.
2. Thế nào là phương trình bậc nhất một ẩn? Nêu công thức nghiệm của phương trình bậc nhất một ẩn.
3. Nêu cách giải phương trình đưa được về phương trình dạng ax + b = 0.
1: Hai phương trình gọi là tương đương khi chúng có chung tập nghiệm
2: Phương trình bậc nhất một ẩn là phương trình có dạng ax+b=0(a<>0), với a,b là các số thực
1. Thế nào là hai phương trình tương đương? Nêu các quy tắc biến đổi tương đương.
2. Thế nào là phương trình bậc nhất một ẩn? Nêu công thức nghiệm của phương trình bậc nhất một ẩn.
3. Nêu cách giải phương trình đưa được về phương trình dạng ax + b = 0.
1: Hai phương trình gọi là tương đương khi chúng có chung tập nghiệm
2: Phương trình bậc nhất một ẩn là phương trình có dạng ax+b=0(a<>0), với a,b là các số thực
Tham Khao :
1.
a. Định nghĩa: Hai phương trình gọi là tương đương nếu chúng có cùng một tập hợp nghiệm.
b. Hai quy tắc biến đổi tương đương các phương trình:
2.
Phương trình có dạng ax + b = 0, với a và b là hai số đã cho và a ≠ 0, được gọi là phương trình bậc nhất một ẩn. Ví dụ: Phương trình 5x – 2 = 0 là phương trình bậc nhất ẩn x. Phương trình y – 8 = 4 là phương trình bậc nhất ẩn y.
3.
Để giải các phương trình đưa được về ax+b=0 a x + b = 0 ta thường biến đổi phương trình như sau: + Quy đồng mẫu hai vế và khử mẫu. + Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng ax+b=0 a x + b = 0 hoặc ax=−b a x = − b .
1)Cách tính nhẩm nghiệm của phương trình bậc hai:\(ax^2+bx+c=0\left(a\ne0\right)\)
Giải các phương trình và hệ phương trình sau:
1. Phương trình bậc hai và hệ thức vi ét
a. -3² + 2x + 8=0
b. 5x² - 6x - 1=0
c. -3x² + 14x - 8=0
2. Nhẩm nghiệm của các phương trình bậc hai sau:
a) 5x² + 3x -2=0
b) -18x² + 7x +11=0
c) x² + 1001x + 1000 =0
d) -7x² - 8x + 15=0
e) 2x³ - 4x² - 6x =0
3. Tìm hai số biết tổng và tích của chúng:
a) u + v =14, uv=40
b) u + v = -7, uv=12
c) u + v = -5, uv = -24
3:
a: u+v=14 và uv=40
=>u,v là nghiệm của pt là x^2-14x+40=0
=>x=4 hoặc x=10
=>(u,v)=(4;10) hoặc (u,v)=(10;4)
b: u+v=-7 và uv=12
=>u,v là các nghiệm của pt:
x^2+7x+12=0
=>x=-3 hoặc x=-4
=>(u,v)=(-3;-4) hoặc (u,v)=(-4;-3)
c; u+v=-5 và uv=-24
=>u,v là các nghiệm của phương trình:
x^2+5x-24=0
=>x=-8 hoặc x=3
=>(u,v)=(-8;3) hoặc (u,v)=(3;-8)
ai biết cách nhẩm nghiệm phương trình bậc 3 không ạ
giải pt: 2x^3 + 7x^2 - x - 12 =0
giải pt : - x^3 + x^2 + 7x + 2 =0
mình vừa lên lớp 9 , chưa học phương trình bậc 2
a)2x3 + 7x2 - x - 12 =0
=>2x3+x2-4x+6x2+3x-12=0
=>x(2x2+x-4)+3(2x2+x-4)=0
=>(x+3)(2x2+x-4)=0
=>x+3=0 hoặc 2x2+x-4=0
Xét x+3=0 <=>x=-3
Xét 2x2+x-4=0 ta dùng delta
\(\Delta=1^2-\left(-4\left(2.4\right)\right)=33>0\)
=>pt có 2 nghiệm phân biệt
\(\Rightarrow x_{1,2}=\frac{-1\pm\sqrt{33}}{4}\)
b)- x^3 + x^2 + 7x + 2 =0
=>-x3+3x2+x-2x2+6x+2=0
=>-x(x2-3x-1)+(-2)(x2-3x-1)=0
=>-(x+2)(x2-3x-1)=0
=>-(x+2)=0 hoặc x2-3x-1=0
Xét -(x+2)=0 <=>x=-2
Xét x2-3x-1=0 theo delta ta có:
\(\Delta=\left(-3\right)^2-\left(-4\left(1.1\right)\right)=13>0\)
=>pt cũng có 2 nghiệm phân biệt
\(\Rightarrow x_{1,2}=\frac{3\pm\sqrt{13}}{2}\)
Mệnh đề nào sau đây sai?
A. Số phức z = a + bi là nghiệm của phương trình x 2 - 2ax + ( a 2 + b 2 ) = 0
B. Mọi số phức đều là nghiệm của một phương trình bậc hai với hệ số thực
C. Mọi phương trình bậc hai với hệ số thực đều có hai nghiệm trong tập số phức C (hai nghiệm không nhất thiết phân biệt)
D. Mọi phương trình bậc hai với hệ số thực có ít nhất một nghiệm thực
Mệnh đề nào sau đây sai?
A. Số phức z = a + bi là nghiệm của phương trình x 2 - 2ax + ( a 2 + b 2 ) = 0
B. Mọi số phức đều là nghiệm của một phương trình bậc hai với hệ số thực
C. Mọi phương trình bậc hai với hệ số thực đều có hai nghiệm trong tập số phức C (hai nghiệm không nhất thiết phân biệt)
D. Mọi phương trình bậc hai với hệ số thực có ít nhất một nghiệm thực