Chứng minh rằng:
\(\frac{x^2+ax+ab+bx}{3bx-a^2-ax+3ab}\)\(=\)\(\frac{x+b}{3b-a}\)
Chứng minh đăng thức:
\(\dfrac{x^2+ax+ab+bx}{3bx-a^2-ax+3ab}=\dfrac{x+b}{3b-a}\)
- Xét tử:
\(x^2+ax+ab+bx\)
\(=x\left(x+a\right)+b\left(x+a\right)\)
\(=\left(x+a\right)\left(x+b\right)\)
- Xét mẫu:
\(3bx-a^2-ax+3ab\)
\(=3bx+3ab-a^2-ax\)
\(=3b\left(x+a\right)-a\left(a+x\right)\)
\(=\left(x+a\right)\left(3b-a\right)\)
Vậy \(\dfrac{x^2+ax+ab+bx}{3bx-a^2-ax+3ab}=\dfrac{\left(x+a\right)\left(x+b\right)}{\left(x+a\right)\left(3b-a\right)}=\dfrac{x+b}{3b-a}\) với \(x\ne-a\)
Ta có: \(VT=\dfrac{x^2+ax+ab+bx}{3bx-a^2-ax+3ab}\)
\(=\dfrac{x\left(a+x\right)+b\left(a+x\right)}{3b\left(x+a\right)-a\left(a+x\right)}\)
\(=\dfrac{\left(b+x\right)\left(a+x\right)}{\left(3b-a\right)\left(a+x\right)}=\dfrac{b+x}{3b-a}=VP\)
\(\Rightarrowđpcm\)
Bài 1 : Tính
1) a . ( b - c ) + b . ( c - a ) + c . ( a - b )
2 ) a . ( bz - cy ) + b . ( cx - az ) + c . ( ay - bx )
Bài 2 . Chứng minh hằng đẳng thức
\(\dfrac{x^2+ax+ab+bx}{3bx-a^2-ax+3ab}=\dfrac{x+b}{3b-a}\)
Bài 1:
1) \(a\left(b-c\right)+b\left(c-a\right)+c\left(a-b\right)\)
\(=ab-ac+bc-ba+ca-cb\)
\(=0\)
2) \(a\left(bz-cy\right)+b\left(cx-az\right)+c\left(ay-bx\right)\)
\(=abz-acy+bcx-baz+cay-cbx\)
\(=0\)
Bài 2:
Ta có:
\(\dfrac{x^2+ax+ab+bx}{3bx-a^2-ax+3ab}\)
\(=\dfrac{\left(x^2+bx\right)+\left(ax+ab\right)}{\left(3bx-ax\right)+\left(3ab-a^2\right)}\)
\(=\dfrac{x\left(x+b\right)+a\left(x+b\right)}{x\left(3b-a\right)+a\left(3b-a\right)}\)
\(=\dfrac{\left(x+a\right)\left(x+b\right)}{\left(x+a\right)\left(3b-a\right)}\)
\(=\dfrac{x+b}{3b-a}\)
Cho \(P\left(x\right)=ax^2+bx+c\). Biết P(x) > 0 với mọi x thuộc R, a>0. Chứng minh: \(\frac{5a-3b+2c}{a-b+c}>1\)
Phân tích đa thức thành nhân tử:
a)A=4acx+4bcx+4x+4bx
b)B=ax-bx+cx-3a+3b-3c
c)C=2ax-bx+3cx-2a+b-3c
d)D=ax-bx-2cx-2a+2b+4c
e)E=3ax2+3bx2+ax+bx+5a+5b
f)F=ax2-bx2-2ax+2bx-3a+3b
A = 4acx + 4bcx + 4ax + 4bx ( đã sửa '-' )
= 4x( ac + bc + a + b )
= 4x[ c( a + b ) + ( a + b ) ]
= 4x( a + b )( c + 1 )
B = ax - bx + cx - 3a + 3b - 3c
= x( a - b + c ) - 3( a - b + c )
= ( a - b + c )( x - 3 )
C = 2ax - bx + 3cx - 2a + b - 3c
= x( 2a - b + 3c ) - ( 2a - b + 3c )
= ( 2a - b + 3c )( x - 1 )
D = ax - bx - 2cx - 2a + 2b + 4c
= x( a - b - 2c ) - 2( a - b - 2c )
= ( a - b - 2c )( x - 2 )
E = 3ax2 + 3bx2 + ax + bx + 5a + 5b
= 3x2( a + b ) + x( a + b ) + 5( a + b )
= ( a + b )( 3x2 + x + 5 )
F = ax2 - bx2 - 2ax + 2bx - 3a + 3b
= x2( a - b ) - 2x( a - b ) - 3( a - b )
= ( a - b )( x2 - 2x - 3 )
= ( a - b )( x2 + x - 3x - 3 )
= ( a - b )[ x( x + 1 ) - 3( x + 1 ) ]
= ( a - b )( x + 1 )( x - 3 )
Phân tích thành nhân tử (mọi người làm chi tiết ạ)
\(2ax-bx+3cx-2a+b-3c\)
\(ax-bx-2cx-2a+2b+4c\)
\(3ax^2 +3bx^2 +ax+bx+5a+5b\)
\(ax^2 -bx^2 -2ax+2bx-3a+3b\)
\(2ax-bx+3cx-2a+b-3c\\ =x\left(2a-b+3c\right)-\left(2a-b+3c\right)\\ =\left(x-1\right)\left(2a-b+3c\right)\)
\(ax-bx-2cx-2a+2b+4c\\ =x\left(a-b-2c\right)-2\left(a-b-2c\right)\\ =\left(x-2\right)\left(a-b-2c\right)\)
\(3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\)
\(ax^2-bx^2-2ax+2bx-3a+3b\\ =x^2\left(a-b\right)-2x\left(a-b\right)-3\left(a+b\right)\\ =\left(x^2-2x-3\right)\left(a+b\right)\\ =\left(x+1\right)\left(x-3\right)\left(a+b\right)\)
Cho a,b,c là ba số khác 0 thỏa mãn \(\frac{ax-bx}{c}=\frac{cx-az}{b}=\frac{bz-ay}{a}\)
Chứng minh rằng :(ax+by+cz)2=(x2 +y2 +z2 )(a2 +b2 +c2 )
Đây là bất đẳng thức Bunhia Cốpxki bạn, lên mạng tra cách giải là đc!
Cho biểu thức
\(P=\frac{ax^2+bx-x}{a_1x^2+b_1x+c_1}\)
Chứng minh rằng nếu \(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}\)thì giá trị của biểu thức P không phụ thuộc vào x
8Cho \(\frac{x}{a}+\frac{y}{b}=1\)và \(\frac{xy}{ab}=-2\)Tính \(\frac{x^3}{a^3}+\frac{y^3}{b^3}\)
10Cho \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)cà x^2+y^2=1 Chứng minh rằng
a) bx2 =ay2
b)\(\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)
25 Cho x,y,z khác 0 và a,b,c dương thỏa mãn ax+by+cz=0 cà a+b+c = 2007
Tính giá trị bieu thức P=\(\frac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
10. a)
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\Leftrightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)
\(\Leftrightarrow\left(a+b\right)\left(x^4+y^4\right)=ab\left(x^2+y^2\right)^2\Leftrightarrow\left(bx^2-ay^2\right)^2=0\Leftrightarrow bx^2=ay^2\)
b) Từ \(ay^2=bx^2\Rightarrow\frac{y^2}{b}=\frac{x^2}{a}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow\frac{x^{2008}}{a^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\); \(\frac{y^{2008}}{b^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\)
\(\Rightarrow\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)
25. Ta có \(\left(ax+by+cz\right)^2=0\Leftrightarrow a^2x^2+b^2y^2+c^2z^2=-2\left(abxy+bcyz+acxz\right)\)
Xét mẫu số của P : \(bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2=bc\left(y^2-2yz+z^2\right)+ac\left(x^2-2xz+z^2\right)+ab\left(x^2-2xy+y^2\right)\)
\(=y^2bc-2bcyz+bcz^2+acx^2-2xzac+acz^2+abx^2-2abxy+aby^2\)
\(=y^2bc+bcz^2+acx^2+acz^2+abx^2+aby^2-2\left(abxy+xzac+bcyz\right)\)
\(=y^2bc+bcz^2+acx^2+acz^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2\)
\(=c\left(ax^2+by^2+cz^2\right)+b\left(ax^2+by^2+cz^2\right)+a\left(ax^2+by^2+cz^2\right)=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\)
\(\Rightarrow P=\frac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\frac{1}{a+b+c}=\frac{1}{2007}\)
8. \(\frac{x^3}{a^3}+\frac{y^3}{b^3}=\left(\frac{x}{a}+\frac{y}{b}\right)^3-3.\frac{xy}{ab}\left(\frac{x}{a}+\frac{y}{b}\right)=1^3-3.\left(-2\right).1=7\)
8. \(\frac{x^3}{a^3}+\frac{y^3}{b^3}=\left(\frac{x}{a}+\frac{y}{b}\right)^3-3.\frac{xy}{ab}\left(\frac{x}{a}+\frac{y}{b}\right)=1^3-3.\left(-2\right).1=7\)
Cho x,y,z,a,b,c thoa man:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}.\).Chứng minh rằng:\(\frac{bz-cy}{a}=\frac{cy-ax}{b}=\frac{ay-bx}{c}\)