\(x^2+\sqrt{x+7}=7\)
tìm ĐK của pt, giải kĩ tí nhé
Giải pt 1) 2-\(\sqrt{\dfrac{x+2}{x-3}}=\sqrt{x+7}\)
2)tìm m để pt \(\dfrac{x-1}{x+1}-2\sqrt{\dfrac{x-1}{x+1}-3m-2=0}\) có nghiệm
Mk đang mắc ở chỗ đặt bằng t rồi chuyển đk của x về điều kiện của t
1) \(\Leftrightarrow4-4\sqrt{\dfrac{x+2}{x-3}}=x+7\)
\(\Leftrightarrow-4\sqrt{\dfrac{x+2}{x-3}}=x+3\)
\(\Leftrightarrow16\dfrac{x+2}{x-3}=x^2+6x+9\)
\(\Leftrightarrow16x+3=x^3+6x^2+9x-3x^2-18x-27\)
\(\Leftrightarrow x^3+3x^2-25x-59=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4,79\\x=-2,2\\x=-5,58\end{matrix}\right.\)
Vậy tập nghiệm....
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\\dfrac{x-1}{x+1}\ge3m+2\end{matrix}\right.\).
\(PT\Leftrightarrow\dfrac{x-1}{x+1}=2\sqrt{\dfrac{x-1}{x+1}-3m-2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1}{x+1}\ge0\\\left(\dfrac{x-1}{x+1}\right)^2-4\left(\dfrac{x-1}{x+1}\right)+4\left(3m+2\right)=0\left(1\right)\end{matrix}\right.\).
Ta có \(\Delta'_{\left(1\right)}=2^2-4\left(3m+2\right)=-12m-4\ge0\Leftrightarrow m\le\dfrac{-1}{3}\).
Ta chứng minh với \(m\le-\dfrac{1}{3}\) pt luôn có nghiệm.
Thật vậy, từ (1) suy ra \(\dfrac{x-1}{x+1}=\sqrt{-12m-4}+2\ge2>3m+2\).
Dễ thấy với t khác 1 thì pt \(\dfrac{x-1}{x+1}=t\) luôn có nghiệm khác 1.
Điều này chứng tỏ pt luôn có nghiệm.
Vậy \(m\le-\dfrac{1}{3}\).
P/s: Không biết có sai đoạn nào không ạ
1) Tìm x,y TM:
9^x-7^x=2^y
2) Giải pt:
\(\sqrt{x}+\sqrt{2-x}=\dfrac{2x}{\sqrt{2x-1}}\)
Mọi người giúp mình nhé =))
Mình làm câu 2 trước nhé:
đkxđ: \(\dfrac{1}{2}< x\le2\)
Áp dụng BĐT Bunyakovsky, ta có \(VT=\left(1.\sqrt{x}+1.\sqrt{2-x}\right)\)\(\le\sqrt{\left(1^2+1^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{2-x}\right)^2\right]}\) \(=2\). ĐTXR \(\Leftrightarrow x=2-x\Leftrightarrow x=1\) (nhận). Vậy \(VT\le2\) (1)
Mặt khác, ta có \(\left(x-1\right)^2\ge0\) \(\Leftrightarrow x^2-\left(2x-1\right)\ge0\) \(\Leftrightarrow\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)\ge0\). Do \(x+\sqrt{2x-1}>0\) nên điều này có nghĩa là \(x\ge\sqrt{2x-1}\) \(\Rightarrow\dfrac{x}{\sqrt{2x-1}}\ge1\) \(\Leftrightarrow\dfrac{2x}{\sqrt{2x-1}}\ge2\) hay \(VP\ge2\) (2). ĐTXR \(\Leftrightarrow x=1\) (nhận)
Từ (1) và (2) suy ra \(VT\le2\le VP\), do đó pt đã cho \(\Leftrightarrow VT=VP\) \(\Leftrightarrow x=1\)
Vậy pt đã cho có nghiệm duy nhất \(x=1\)
a) Giải pt: \(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
b)Giải hệ pt \(\left\{{}\begin{matrix}xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{x}\\3\sqrt{6-y}+3\sqrt{2x+3y-7}=2x+7\end{matrix}\right.\)
a.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Biến đổi pt đầu:
\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2b^2-b^4=b-a\)
\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)
Thế vào pt dưới:
\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)
\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)
\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow...\)
\(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\) (ĐK x>0; x\(\ne9\))
a)Rút gọn A và B
b) Tìm các giá trị của x để giá trị biểu thức A lớn hơn giá trị biểu thức B
a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=2\sqrt{7}-3\sqrt{7}+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)
\(=-\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\dfrac{8}{\sqrt{x}-3}\)
b) \(A>B\Rightarrow-\sqrt{7}>\dfrac{8}{\sqrt{x}-3}\Rightarrow\dfrac{8}{\sqrt{x}-3}+\sqrt{7}< 0\)
\(\Rightarrow\dfrac{\sqrt{7x}+8-3\sqrt{7}}{\sqrt{x}-3}< 0\)
Ta có: \(\left\{{}\begin{matrix}8=\sqrt{64}\\3\sqrt{7}=\sqrt{63}\end{matrix}\right.\Rightarrow8-3\sqrt{7}>0\Rightarrow8-3\sqrt{7}+\sqrt{7x}>0\)
\(\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0< x< 9\)
Giải pt \(x^3+12x+7\sqrt{x+2}+7\sqrt{8-x}=6x^2+9\)
a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
b)\(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)
c)\(\sqrt{x-7}+\sqrt{9-x}=x^2-16+66\)
giải pt nhé giúp mình với chiều học rồi
a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
\(pt\Leftrightarrow\sqrt{3x^2+6x+3+4}+\sqrt{5x^2+10x+5+9}=-x^2-2x+4\)
\(\Leftrightarrow\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}=-x^2-2x+4\)
\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=-x^2-2x+4\)
Dễ thấy: \(\hept{\begin{cases}3\left(x+1\right)^2\ge0\\5\left(x+1\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3\left(x+1\right)^2+4\ge4\\5\left(x+1\right)^2+9\ge9\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\sqrt{3\left(x+1\right)^2+4}\ge2\\\sqrt{5\left(x+1\right)^2+9}\ge3\end{cases}}\)
\(\Rightarrow VT=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\)
Và \(VP=-x^2-2x+4=-x^2-2x-1+5\)
\(=-\left(x^2+2x+1\right)+5=-\left(x+1\right)^2+5\le5\)
SUy ra \(VT\ge VP=5\Leftrightarrow x=-1\)
b)\(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)
\(pt\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}-\sqrt{x-1}=1\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2-\sqrt{x-1}=1\)
..... giải nốt tiếp ra x=1
c)Sửa đề \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)
ĐK:....
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{x-7}+\sqrt{9-x}\right)^2\)
\(\le\left(1+1\right)\left(x-7+9-x\right)=4\)
\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)
Lại có: \(VP=x^2-16x+66=x^2-16x+64+2\)
\(=\left(x-8\right)^2+2\ge2\)
Suy ra \(VT\ge VP=2\) khi \(VT=VP=2\)
\(\Rightarrow\left(x-8\right)^2+2=2\Rightarrow x-8=0\Rightarrow x=8\)
Tính GTLN của biểu thức A.
\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}\)(đk: \(x\ge0,x\ne1,x\ne4\))
B2. Giải pt
\(\sqrt{x-3}+\sqrt{y-5}+\sqrt{z-4}=20-\dfrac{4}{\sqrt{x-3}}-\dfrac{9}{\sqrt{y-5}}-\dfrac{25}{\sqrt{z-4}}\)
\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}=\dfrac{3-\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=\dfrac{3}{\sqrt{x}+2}-1\)
Có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\)\(\Leftrightarrow\dfrac{3}{\sqrt{x}+2}-1\le\dfrac{1}{2}\)\(\Leftrightarrow A\le\dfrac{1}{2}\)
Dấu "=" xảy ra khi x=0 (tm)
Vậy \(A_{max}=\dfrac{1}{2}\)
Bài 2:
Đk: \(x\ge3;y\ge5;z\ge4\)
Pt\(\Leftrightarrow\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}+\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}+\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}=20\)
Áp dụng AM-GM có:
\(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\ge2\sqrt{\sqrt{x-3}.\dfrac{4}{\sqrt{x-3}}}=4\)
\(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\ge6\)
\(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\ge10\)
Cộng vế với vế \(\Rightarrow VT\ge20\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-3}=\dfrac{4}{\sqrt{x-3}}\\\sqrt{y-5}=\dfrac{9}{\sqrt{y-5}}\\\sqrt{z-4}=\dfrac{25}{\sqrt{z-4}}\end{matrix}\right.\)\(\Leftrightarrow x=7;y=14;z=29\) (tm)
Vậy...
giải pt \(\sqrt{x+8+2\sqrt{x+7}}+\sqrt{x+1-\sqrt{x+7}}=4\)
A= \(\dfrac{\sqrt{x}+7}{x-1}\) ĐK: \(x\ge0,x\ne1\)
B=\(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
Tìm các giá trị nguyên của x để biểu thứ P=A.B có giá trị luôn
Ta có: \(P=A\cdot B\)
\(=\dfrac{\sqrt{x}+7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}+7}{x+3\sqrt{x}+2}\)
Đề thiếu rồi bạn