tìm x,y thuộc N
25- Y2 = 8.( x -2015 )2
help me!
Tìm x;y thuộc Z biết: 25-y2 =8(x-2015)2
Cách nhanh nhất để giải bài này là dùng phương pháp chặn em nhé.
Phương pháp chặn là giới hạn các giá trị của biến kết hợp điều kiện đề bài để tìm biến. Em tham khảo cách này của cô xem.
25 - y2 = 8( \(x\) - 2015)2
ta có: ( \(x-2015\))2 ≥ 0 ∀ \(x\) (1)
Mặt khác ta có: y2 ≥ 0 ∀ y ⇒ - y2 ≤ 0 ∀ y ⇒ 25 - y2 ≤ 25 ∀ y
⇒ 25 - y2 = 8(\(x-2015\))2 ≤ 25 ∀ \(x,y\)
⇒ (\(x-2015\))2 ≤ \(\dfrac{25}{8}\) = 3,125 ∀ \(x\) (2)
Kết hợp (1) và (2) ta có: 0 ≤ (\(x-2015\))2 ≤ 3,125
vì \(x\in\) Z nên ⇒ (\(x-2015\))2 \(\in\) Z
⇒ (\(x-2015\))2 \(\in\) {0; 1; 2; 3}
th1:(\(x-2015\) )2= 0 ⇒ \(x\) = 2015; ⇒ 25 - y2 = 0⇒ y = +-5
th2:(\(x-2015\))2 = 1⇒ 25 - y2 = 8 ⇒ y2 = 25 - 8 ⇒ y = +- \(\sqrt{17}\) ( loại)
th3: (\(x-2015\))2 = 2 ⇒ \(\left[{}\begin{matrix}x=\sqrt{2}+2015\left(ktm\right)\\x=-\sqrt{2}+2015\left(ktm\right)\end{matrix}\right.\)
th4: (\(x-2015\))2 = 3 ⇒ \(\left[{}\begin{matrix}x=\sqrt{3}+2015\left(ktm\right)\\x=-\sqrt{3}+2015\left(ktm\right)\end{matrix}\right.\)
Vậy (\(x,y\)) = ( 2015; -5); ( 2015; 5) là giá trị thỏa mãn đề bài
Tìm x, y thuộc N biết rằng
25 - y^2 = 8(x - 2015)^2
Tìm x;y thuộc Z biết : 25-y^2=8*(x-2015)^2
Tìm x,y thuộc \(ℤ\) biết : 25 \(-\) \(y^2=8\left(x-2015\right)^2\)
tìm x;y thuộc Zbiết 25-y2=8(x-2015)2
Tìm x,y thuộc Z biết 25 - y2 + 8 . (x - 2015)2
Tìm số nguyên x và y biết : 25 - y2 = 8 ( x - 2015 )2
Tìm x,y thuộc Z biết : 25 - y2 = 8(x - 2015)2
Giúp mình với, mình cảm ơn.
http://olm.vn/hoi-dap/question/103082.html
Ta có: (x - 2015)2 \(\ge\)0 \(\forall\)x => 8(x - 2015)2 \(\ge\)0 \(\forall\)x
=> 25 - y2 \(\ge\)0
<=> y2 \(\le\) 25
<=> |y| \(\le\)5
Do y \(\in\)Z => 0 \(\le\)y < 5
+) Với y = 0 => 25 - 02 = 8(x - 2015)2
=> 25 = 8(x - 2015)2
=> (x - 2015)2 = 25 : 8 (ko thõa mãn vì (x - 2015)2 là số chính phương còn 25 : 8 ko phải là số chính phương)
+)Với y = 1 => 25 - 12 = 8.(x - 2015)2
=> 24 = 8.(x - 2015)2
=> (x - 2015)2 = 24 : 8 = 3 (ko thõa mãn)
+) Với y = 2 => 25 - 22 = 8(x - 2015)2
=> 21 = 8(x - 2015)2
=> (x - 2015)2 = 21 : 8 (ko thõa mãn)
+) Với y = 3 => 25 - 32 = 8(x - 2015)2
=> 16 = 8(x - 2015)2
=> (x - 2015)2 = 16 : 8 = 2 (ko thõa mãn)
+) Với y = 4 => 25 - 42 = 8(x - 2015)2
=> 9 = 8(x - 2015)2
=> (x - 2015)2 = 9 : 8 (ko thõa mãn)
+) Với y = 5 => 25 - 52 = 8(x - 2015)2
=> 0 = 8(x - 2015)2
=> (x - 2015)2 = 0
=> x - 2015 = 0
=> x = 2015
Vậy {x;y} thõa mãn là {2015; 5}
Số cặp x, y nguyên thỏa mãn 8(x−2015)2+y2=25 là
\(8\left(x-2015\right)^2+y^2=25\)
=> 8(x-2015)2 nhỏ hơn hoặc bằng 25 ( vì y2 nhỏ hơn hoặc bằng 0)
=> (x-2015)2---------------------------- 25/8
=> x-2015 ={-1;0;1} (hơi tắt xíu mong bạn hiểu)
Ta có bảng:
x-2015 | -1 | 0 | 1 |
x | 2014 | 2015 | 2016 |
y | \(\sqrt{\frac{25}{8}}\)(loại) | 5;-5(thỏa mãn) | \(\sqrt{\frac{25}{8}}\)(loại) |
KL: Vậy có 2 cặp x,y thỏa mãn