Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 1 2017 lúc 9:29

ĐK:  y ≥ 1 3 x + 2 y ≥ 1 ⇔ x ≥ 1 − 2 y y ≥ 1 3

Xét  3 y − 1 + x + 2 y − 1 = 0 ⇔ x = y = 1 3

Thay vào (2) không thỏa mãn

Xét  3 y − 1 + x + 2 y − 1 ≠ 0 ⇔ x ≠ 1 3 y ≠ 1 3

(1) ⇔ y ( x   –   y ) = y − x 3 y − 1 + x + 2 y − 1

Với x = y, thay vào (2) ta được:

x 4 – 4 x 3 + 7 x 2 − 6 x + 2 = 0 ⇔ ( x – 1 ) 2   ( x 2 – 2 x + 2 ) = 0 ⇔ x   =   1

Khi đó: y = 1 (TM). Vậy nghiệm của hệ là (1; 1)

Nên x. y = 1

Đáp án:B

ngo pham phuong nhi
Xem chi tiết
Lqmobie
Xem chi tiết
missing you =
26 tháng 12 2021 lúc 17:29

\(\left\{{}\begin{matrix}x^2+2xy-3y^2=-4\left(1\right)\\2x^2+xy+4y^2=5\left(2\right)\end{matrix}\right.\)\(với\)\(y=0\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}x^2=-4\\2x^2=5\end{matrix}\right.\)\(\left(loại\right)\)

\(y\ne0\) \(đặt:x=t.y\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}t^2y^2+2ty^2-3y^2=-4\left(3\right)\\2t^2y^2+ty^2+4y^2=5\left(4\right)\end{matrix}\right.\)

\(\Leftrightarrow5t^2y^2+10ty^2-15y^2=-8t^2y^2-4ty^2-16y^2\)

\(\Leftrightarrow13t^2y^2+14ty^2+y^2=0\)

\(\Leftrightarrow13t^2+14t+1=0\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{1}{13}\\t=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{13}y\left(5\right)\\x=-y\left(6\right)\end{matrix}\right.\)

\(thay\left(5\right)và\left(6\right)\) \(lên\left(1\right)hoặc\left(2\right)\Rightarrow\left(x;y\right)=\left\{\left(1;-1\right);\left(-1;1\right);\left(-\dfrac{1}{\sqrt{133}};\dfrac{13}{\sqrt{133}}\right)\right\}\)

\(pt:x^4-4x^3+x^2+6x+m+2=0\)

\(\Leftrightarrow x^4-4x^3+4x^2-3x^2+6x+m+2=0\)

\(\Leftrightarrow\left(x^2-2x\right)^2-3\left(x^2-2x\right)+m+2=0\left(1\right)\)

\(đặt:x^2-2x=t\ge-1\)

\(\Rightarrow\left(1\right)\Leftrightarrow t^2-3t=-m-2\)

\(xét:f\left(t\right)=t^2-3t\) \(trên[-1;+\text{∞})\) \(và:y=-m-2\)

\(\Rightarrow f\left(-1\right)=4\)

\(f\left(-\dfrac{b}{2a}\right)=-\dfrac{9}{4}\)

\(\left(1\right)\) \(có\) \(3\) \(ngo\) \(pb\Leftrightarrow-m-2=4\Leftrightarrow m=-6\)

Hắc Thiên
Xem chi tiết
Ngọc
Xem chi tiết
Akai Haruma
10 tháng 2 lúc 23:21

** Bổ sung điều kiện $x,y$ là số nguyên.

a/

$(5x-1)(y+1)=4$
Với $x,y$ nguyên thì $5x-1, y+1$ nguyên. Mà tích của chúng bằng 4 nên ta có các trường hợp sau:

TH1:  $5x-1=1, y+1=4\Rightarrow x=\frac{2}{5}$ (loại) 

TH2:  $5x-1=-1, y+1=-4\Rightarrow x=0; y=-5$

TH3:  $5x-1=2, y+1=2\Rightarrow x=\frac{3}{5}$ (loại) 

TH4: $5x-1=-2, y+1=-2\Rightarrow x=\frac{-1}{5}$ (loại)

TH5: $5x-1=4, y+1=1\Rightarrow x=1; y=0$

TH6: $5x-1=-4; y+1=-1\Rightarrow x=\frac{-3}{5}$ (loại)

Vậy......

Akai Haruma
10 tháng 2 lúc 23:28

b/

$xy-7y+5x=0$

$y(x-7)+5(x-7)=-35$

$(x-7)(y+5)=-35$

Vì $x,y$ nguyên nên $x-7, y+5$ nguyên. $(x-7)(y+5)=-35\Rightarrow x-7$ là ước của $-35$.

Mà $x\geq 3\Rightarrow x-7\geq -4$

$\Rightarrow x-7\in \left\{-1; 1; 5; 7; 35\right\}$

Nếu $x-7=-1\Rightarrow y+5=35$

$\Rightarrow x=6; y=30$

Nếu $x-7=1\Rightarrow y+5=-35$

$\Rightarrow x=8; y=-40$

Nếu $x-7=5\Rightarrow y+5=-7$

$\Rightarrow x=12; y=-12$
Nếu $x-7=7\Rightarrow y+5=-5$

$\Rightarrow x=14; y=-10$

Nếu $x-7=35; y+5=-1$

$\Rightarrow x=42; y=-6$

Akai Haruma
10 tháng 2 lúc 23:30

c/

$xy-x-3y=8$

$\Rightarrow (xy-x)-3y=8$

$\Rightarrow x(y-1)-3(y-1)=11$

$\Rightarrow (y-1)(x-3)=11$

Do $x,y$ nguyên nên $x-3, y-1$ cũng là số nguyên. Mà $(x-3)(y-1)=11$ nên ta có các TH sau:
TH1: $x-3=1, y-1=11\Rightarrow x=4; y=12$

TH2: $x-3=-1, y-1=-11\Rightarrow x=2; y=-10$

TH3: $x-3=11, y-1=1\Rightarrow x=14; y=2$

TH4: $x-3=-11, y-1=-1\Rightarrow x=-8; y=0$
 

Thien Nguyen
Xem chi tiết
Đỗ Thanh Hải
16 tháng 4 2021 lúc 17:41

1) \(\left\{{}\begin{matrix}2x+y=10\\5x-3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10x+5y=50\\10x-6y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11y=44\\2x+y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=3\end{matrix}\right.\)

Vậy hpt có nghiệm (x;y) = (3;4)

2)

a) 3x2 - 2x - 1 = 0

\(\Leftrightarrow3x^2-3x+x-1=0\)

\(\Leftrightarrow3x\left(x-1\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=1\end{matrix}\right.\)

Vậy pt có nghiệm x = 1 hoặc x = 3

b) Đặt x2 = t (t \(\ge\) 0)

Pt trở thành: t2 - 20t + 4 = 0

\(\Delta\) = (-20)2 - 4.1.4 = 400 - 16 = 384

=> pt có 2 nghiệm phân biệt t1 = \(\dfrac{20+8\sqrt{6}}{2}=10+4\sqrt{6}\)

t2 = \(\dfrac{20-8\sqrt{6}}{2}=10-4\sqrt{6}\)

=> x1 = \(\sqrt{10+4\sqrt{6}}=\sqrt{\left(2+\sqrt{6}\right)^2}=2+\sqrt{6}\)

x2 = \(2-\sqrt{6}\)

Nhue
Xem chi tiết
Kiều Vũ Linh
7 tháng 3 2023 lúc 10:00

1. A

2. D

3. A

4. A

Nguyễn Lê Phước Thịnh
7 tháng 3 2023 lúc 10:01

4A

3A

2D

1D

ocschoss
Xem chi tiết
Nguyễn Thanh Hương
Xem chi tiết
Vũ Minh Tuấn
9 tháng 10 2019 lúc 22:23

a) \(x^{12}:\left(-x\right)^6\)

\(=x^{12}:x^6\)

\(=x^6.\)

b) \(\left(-x\right)^7:\left(-x\right)^5\)

\(=\left(-x\right)^2\)

\(=x^2.\)

c) \(5x^3y^4:10x^2y\)

\(=\frac{1}{2}xy^3.\)

d) \(\frac{3}{4}x^3y^3:\left(-\frac{1}{2}xy^2\right)\)

\(=-\frac{3}{2}x^2y.\)

e) \(\left(-xy\right)^{14}:\left(-xy\right)^7\)

\(=\left(-xy\right)^7\)

\(=-x^7y^7.\)

Chúc bạn học tốt!