(2.x2n+3.x2n-1)(x1-2n-3.x2-2n)
cho
f(x)= x2n-x2n-1+....+x2-x+1 (xϵN)
g(x)=-x2n+1+x2n-x2n-1+....+x2-x=1
tính giá trị của hiệu f(x)-g(x) tại x=\(\dfrac{1}{10}\)
Cho pt : x^2 - 6x + 2n - 3=0 (1)
Tìm n để pt (1) có hai nghiệm phân biệt x1:x2 thỏa
(x1^2 - 5x1 + 2n - 4)(x2^2 - 5x2 + 2n - 4)=-4
\(\Delta'=9-\left(2n-3\right)=12-2n>0\Rightarrow n< 6\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=2n-3\end{matrix}\right.\)
Do \(x_1\) là nghiệm của pt nên:
\(x_1^2-6x_1+2n-3=0\Leftrightarrow x_1^2-5x_1+2n-4=x_1-1\)
Tương tự ta có: \(x_2^2-5x_2+2n-4=x_2-1\)
Thế vào bài toán:
\(\left(x_1-1\right)\left(x_2-1\right)=-4\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1=-4\)
\(\Leftrightarrow2n-3-6+1=-4\Rightarrow n=2\)
Cho phương trình:x^2-6x+2n-3=0 (với n là tham số ) (1)
1) Giải phương trình (1) với n=4
2) Tìm n để phương trình (1) có hai nghiệm phân biệt x1;x2 thỏa mãn:
(x1^2 -5x1 +2n -4)(x2^2 - 5x2 +2n-4)=-4
Thay n = 4 vào pt (1) ta có
\(x^2-6x+5=0\\ ta.có.a+b+c=1-6+5=0\\ Vậy.pt.có.n_o:\\ x_1=1;x_2=\dfrac{c}{a}=5\)
\(Ta.có:\Delta=b^2-4ac=....=-8n+48\\ Để.pt.\left(1\right).có.1.n_o.phân.biệt.thì.\Delta>0\\ \Leftrightarrow n< 6\)
Vậy m < 6 thì pt (1) có nghiệm phân biệt \(x_1;x_2\) nên theo Vi ét ta có
\(x_1+x_2=\dfrac{-b}{a}=6\\ x_1x_2=\dfrac{c}{a}=2n-3\)
Ta có
\(x^2-6x+2n-3=0\\ \Leftrightarrow x^2-5x+2n-4=x-1\)
Vì x1 x2 là nghiệm pt \(x^2-6x+2n-3=0\) nên x1 x2 là nghiệm PT \(x^2-5x+2n-4=x-1\) nên ta có
\(x_1^2-5x+2x-4=x_1-1.và\\ x_2^2-5x_2+2n-4=x_2-1\\ \Rightarrow\left(x_1^2-5x_1+2n-4\right)\left(x_2^2-5x_2+2n-4\right)=\left(x_1-1\right)\left(x_2-1\right)\)
\(Mà\\ \left(x_1^2-5x_1+2n-4\right)\left(x_2^2-5x_2+2n-4\right)=-4\\ Nên\left(x_1-1\right)\left(x_2-1\right)=-4\\ \Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1=-4\\ \Leftrightarrow2n-3-6+1=-4\\ \Leftrightarrow2n=4\Rightarrow n=2\left(tm\right)\\ ......\left(kl\right)\)
Cho đa thức A(x) = 1 + x2 + x4 + .... + x2n - 2; B= 1 + x + x2 + ... + xn-1. Tìm số nguyên dương n để đa thức A(x) chia hết cho đa thức B(x).
A(x)=(1-x^n)(1+x^n)/(1-x)(1+x)
B(x)=1-x^n/1-x
A(x) chia hết cho B(x) khi 1-x^n chia hết cho 1+x
x^n+1/x+1=A(x)+(1+(-1)^n)/(x+1)
=>1-x^n chia hết cho 1+x khi và chỉ khi n=2k+1
Tìm số tự nhiên n để đa thức:
A(x)=x2n+xn+1 chia hết cho đa thức x2+x+1.
Vì \(A\left(x\right)=x^{2n}+x^n+1\) chỉ có một hằng số là1
đa thức \(x^2+x+1\) cũng chỉ có một hằng số là 1
Để \(A\left(x\right)⋮x^2+x+1\) thì thì \(A\left(x\right)\) phải có số mũ tương ứng với các bậc như đa thức : => n=1
-Đáp án cuối cùng: \(n=3k+1\) hay \(n=3k+2\)
Tìm số tự nhiên n để đa thức:
A(x)=x2n+xn+1 chia hết cho đa thức x2+x+1.
Biểu thức D = x ( x 2 n - 1 + y ) – y ( x + y 2 n - 1 ) + y 2 n – x 2 n + 5 , D có giá trị là:
A. 2 y 2 n
B. -5
C. x 2 n
D. 5
Ta có
D = x ( x 2 n - 1 + y ) – y ( x + y 2 n - 1 ) + y 2 n – x 2 n + 5
= x . x 2 n - 1 + x . y – y . x – y . y 2 n - 1 + y 2 n – x 2 n + 5
= x 2 n + x y – x y – y 2 n + y 2 n – x 2 n + 5
= ( x 2 n – x 2 n ) + ( x y – x y ) + ( y 2 n – y 2 n ) + 5
= 0 + 0 + 0 + 5 = 5
Đáp án cần chọn là: D
Cho phương trình: x2 - 6x + 2n - 3 = 0 (với n là tham số). Tìm n để phương trình trên có 2 nghiệm phân biệt x1, x2 thỏa mãn:
(x12 - 5x1 + 2n - 4)(x22 - 5x2 + 2n - 4) = -4
\(\Delta'=9-\left(2n-3\right)>0\Leftrightarrow n< 6\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=2n-3\end{matrix}\right.\)
Do \(x_1;x_2\) là nghiệm nên:
\(\left\{{}\begin{matrix}x_1^2-6x_1+2n-3=0\\x_2^2-6x_2+2n-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1^2-5x_1+2n-4=x_1-1\\x_2^2-5x_2+2n-4=x_2-1\end{matrix}\right.\)
Thay vào bài toán:
\(\left(x_1-1\right)\left(x_2-1\right)=-4\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+5=0\)
\(\Leftrightarrow2n-3-6+5=0\Leftrightarrow n=2\)
cho 2 da thuc
m(x)=3x3+x2+4x4-x-3x3+5x4+x2
n(x)=-x2-x4+4x3-x2-5x3+3x+1+x
a, thu gon va sap sep theo luy thua giam dan
b tinh m(x)+n(x) ; n(x)-m(x)
c dat p(x)=m(x)+n(x) tinh p (x)=-2
`@` `\text {dnammv}`
`a,`
`M(x)=3x^3+x^2+4x^4-x-3x^3+5x^4+x^2`
`= (4x^4+5x^4)+(3x^3-3x^3)+(x^2+x^2)-x`
`= 9x^4+2x^2-x`
`N(x)=-x^2-x^4+4x^3-x^2-5x^3+3x+1+x`
`=-x^4+(4x^3-5x^3)+(-x^2-x^2)+(3x+x)+1`
`= -x^4-x^3-2x^2+4x+1`
`b,`
`M(x)+N(x)=(9x^4+2x^2-x)+(-x^4-x^3-2x^2+4x+1)`
`= 9x^4+2x^2-x-x^4-x^3-2x^2+4x+1`
`= (9x^4-x^4)-x^3+(2x^2-2x^2)+(-x+4x)+1`
`= 8x^4-x^3+3x+1`
`N(x)-M(x)=(-x^4-x^3-2x^2+4x+1)-(9x^4+2x^2-x)`
`= -x^4-x^3-2x^2+4x+1-9x^4-2x^2+x`
`= (-x^4-9x^4)-x^3+(-2x^2-2x^2)+(4x+x)+1`
`= -10x^4-x^3-4x^2+5x+1`
`c,`
`P(x)=M(x)+N(x)`
`P(x)= 8x^4-x^3+3x+1`
Thay `x=-2`
`P(-2)= 8*(-2)^4-(-2)^3+3*(-2)+1`
`= 8*16+8-6+1`
`= 136-6+1=131`
Thực hiện sơ đồ phản ứng (đúng với tỉ lệ mol các chất) sau:
(1) X + 2NaOH → t 0 X1 + X2 + 2H2O.
(2) X1 + H2SO4 ¾¾® Na2SO4 + X3.
(3) n X2 + n X4 → t 0 Nilon-6,6 + 2n H2O.
(4) n X3 + n X5 → t 0 Tơ lapsan + 2n H2O.
Nhận định nào sau đây là sai?
A. X2 có tên thay thế là hexan-1,6-điamin
B. X4 và X5 có mạch cacbon không phân nhánh
C. X3 và X4 có cùng số nguyên tử cacbon
D. X có công thức phân tử là C14H22O4N2
Chọn C
1 C 6 H 4 C O O N H 3 2 + 2 N a O H → t 0 C 6 H 4 C O O N a 2 + N H 2 C H 2 6 N H 2 X 1 X 2
2 C 6 H 4 C O O N a 2 + H 2 S O 4 → C 6 H 4 C O O H 2 + N a 2 S O 4 X 1 X 3
3 n H O O C C H 2 4 C O O H + n N H 2 C H 2 9 N H 2 → t 0 - O C C H 2 6 C O N H C H 2 6 N H - n + 2 n H 2 O X 4 X 2 n i l o n - 6 , 6
4 n C 6 H 4 C O O H 2 + n C 2 H 4 O H 2 → t 0 - O C C 6 H 4 C O O C 2 H 4 C 2 H 4 O - n + n H 2 O X 3 X 5 T ơ l a p s a n