Cho hai đường thẳng xx' và yy' cắt nhau tại O sao cho góc xoy = 2/3 góc xoy'. Tính góc xoy' .
Cho đường thẳng xx' và yy' cắt nhau tại O. Tính góc xOy. Biết 2 góc xOy = 3 góc yOx'
Ta có: 2 tia xx' và yy' cắt nhau tại O
\(\Rightarrow\widehat{xOy}\) và \(\widehat{yOx'}\) là 2 góc kề bù
\(\Rightarrow\widehat{xOy}+\widehat{yOx'}=180^0\)
Mà \(2\widehat{xOy}=3\widehat{yOx'}\Rightarrow\widehat{yOx'}=\dfrac{2}{3}\widehat{xOy}\)
\(\Rightarrow\widehat{xOy}+\dfrac{2}{3}\widehat{xOy}=180^0\)
\(\Rightarrow\dfrac{5}{3}\widehat{xOy}=180^0\)
\(\Rightarrow\widehat{xOy}=108^0\)
Cho 2 đường thẳng xx', yy' cắt nhau tại O. Biết góc xOy=5 xOy'. tính góc xOy,xOy', x'Oy,x'Oy
\(\widehat{xOy}+\widehat{xOy'}=180^0\)
mà \(\widehat{xOy}=5\widehat{xOy'}\)\(\Rightarrow6\widehat{xoy'}=180^0\Rightarrow\widehat{xoy'}=180^0:6=30^0\)
\(\Rightarrow\widehat{xoy}=180^0-30^0=150^0\)
\(\widehat{x'oy}=\widehat{xoy'}=30^0\) ( đối đỉnh)
\(\widehat{xoy}=\widehat{x'oy'}=150^0\) ( đối đỉnh)
Cho 2 đường thẳng xx', yy' cắt nhau tại O. Biết góc xOy=5 xOy'. tính góc xOy,xOy', x'Oy,x'Oy
Ta có : xOy + xOy' = 180o (vì là 2 góc kề bù)
Mà xOy = 5xOy' (đề bài)
=> 5xOy' + xOy' = 180o
=> (1 + 5) xOy' = 180o
=> 6xOy' = 180o
=> xOy' = 180o : 6
=> xOy' = 30o
Ta có : xOy + xOy' = 180o
Mà xOy' = 30o (CMT)
=> xOy + 30o = 180o
=> xOy = 180o - 30o
=> xOy = 160o
Ta có : x'Oy = xOy' (vì là 2 góc đối đỉnh)
Mà xOy' = 30o (CMT)
=> x'Oy = 30o
Ta có :
Hình không được chuẩn lắm ~~
Vì góc xoy=5 xoy'
Mà yOy'=180 độ =>xoy=180:(5+1)x5=150(độ)
Góc xoy'=150:3=50(độ)
Góc xoy đối đỉnh với góc x'Oy' nên x'Oy'=150 độ
Góc xOy' đối đỉnh với góc x'Oy nên x'Oy=50 độ
Vậy ...
Gọi số đo góc xOy' là a thì số đo góc xOy là 5a.
Ta có
xOy'+xOy = 180
<=> a+5a=180
<=> 6a=180
<=>a=180:6
<=>xOy' = 30
=>xOy=180-xOy' =180-30=150
xOy' và x'Oy là 2 góc đối đỉnh nên xOy' = x'Oy = 30
xOy và x'Oy' là 2 góc đối đỉnh nên xOy = x'Oy' = 150
Vậy xOy' = 30 ; xOy=150 ; x'Oy=30 ; x'Oy' = 150
hai đường thẳng xx phẩy và yy phẩy cắt nhau tại O sao cho gó xOy = 50 độ . tính số đo góc xoy phẩy
ta co xOy+xOyphẩy=180
ma xOy=50
nen xOyphay =180-50=130
cho 2 đường thẳng xx' và yy' cắt nhau tại O sao cho xO6y=2.x'Ôy. Tính các góc xOy, x'Oy, xOy', x'Oy'
\(\widehat{xOy}=\widehat{x'Oy'}=120^0;\widehat{x'Oy}=\widehat{xOy'}=60^0\)
Hai đường thẳng xx’ và yy’ cắt nhau tại O sao cho góc xOy vuông (H.3.8). Khi đó các góc yOx’, x’Oy’, xOy’ cũng đều là góc vuông. Vì sao?
Góc x’Oy’ và xOy là hai góc đối đỉnh nên \(\widehat {x'Oy'} = \widehat {xOy} = 90^\circ \)
Góc xOy’ và xOy là hai góc kề bù nên
\(\begin{array}{l}\widehat {xOy'} + \widehat {xOy} = 180^\circ \\ \Rightarrow \widehat {xOy'} + 90^\circ = 180^\circ \\ \Rightarrow \widehat {xOy'} = 180^\circ - 90^\circ = 90^\circ \end{array}\)
Góc x’Oy và xOy là hai góc kề bù nên
\(\begin{array}{l}\widehat {x'Oy} + \widehat {xOy} = 180^\circ \\ \Rightarrow \widehat {x'Oy} + 90^\circ = 180^\circ \\ \Rightarrow \widehat {x'Oy} = 180^\circ - 90^\circ = 90^\circ \end{array}\)
Vẽ hai đường thẳng xx' và yy' cắt nhau tại O sao cho xOy=60o . Tính số đo góc xOy' , x'Oy', x'Oy ?
Vì xOy và xOy' là 2 góc kề bù
=> xOy + xOy' = 180*
Thay xOy = 60*
=> xOy' = 180* - 60*
xOy' = 120*
Vì xx' và yy' cắt nhau tại O
=> xOy và x'Oy' là 2 góc đối đỉnh mà xOy = 60*
=> xOy = x'Oy' = 60*
Vì x'Oy là góc đối đỉnh của xOy' mà xOy' = 120*
=> x'Oy = 120*
Tính rõ rồi nha bạn, nếu cần chứng minh 2 góc đối đỉnh, lm đầy đủ hơn nữa thì bảo mik, cn như này là cx đc điểm tối đa òi
Ta có:
Do \(\widehat{xOy}\) và \(\widehat{xOy'}\) là 2 góc kề bù
\(\Rightarrow\)\(\widehat{xOy}\) + \(\widehat{xOy'}\) = 180o
\(\Rightarrow\)60o + \(\widehat{xOy'}\) = 180o
\(\Rightarrow\)\(\widehat{xOy'}\) = 180o - 60o = 120o
Vậy \(\widehat{xOy'}\)= 120o
Ta có:
Do \(\widehat{xOy}\)và góc \(\widehat{x'Oy'}\) là 2 góc đối đỉnh
\(\Rightarrow\)\(\widehat{xOy}=\widehat{x'Oy'}=60^o\)
Ta có:
Do \(\widehat{xOy}\) và \(\widehat{x'Oy}\) là 2 góc kề bù
\(\Rightarrow\widehat{xOy}+\widehat{x'Oy}=180^o\)
\(\Rightarrow60^o+\widehat{x'Oy}=180^o\)
\(\Rightarrow\widehat{x'Oy}=180^o-60^o=120^o\)
Vậy \(\widehat{x'Oy=120^o}\)
Hoặc bạn có thể giải bằng cách này thì ngắn gọn hơn
Ta có:
Do \(\widehat{xOy'}\) và \(\widehat{x'Oy}\) là hai góc đối đỉnh
\(\Rightarrow\widehat{xOy'}=\widehat{x'Oy}=120^o\)
Vậy \(\widehat{x'Oy}=120^o\)
Cho hai đường thẳng xx' và yy' cắt nhau tại O. Biết rằng góc xOy = 2 nhân góc xoy' . Tỉ số về độ lớn giữa góc xOy và góc x'Oy' là ....
tỉ số về đọ lớn giữa góc xOy và x'Oy' gấp 2 lần
Cho hai đường thẳng xx' và yy' cắt nhau tại O. Góc xOy có số đo là 100°. Tính số đo góc đối đỉnh với góc xOy?
góc đối đỉnh với xOy là x'Oy' và x'Oy'= 100