Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vo Thi Minh Dao
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 11 2018 lúc 17:36

\(\sqrt{1+2005^2+\dfrac{2005^2}{2006^2}}=\dfrac{1}{2006}\sqrt{2006^2+2005^2+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{\left(2006-2005\right)^2+2.2005.2006+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{1+2.2005.2006+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{\left(2005.2006+1\right)^2}=\dfrac{2005.2006+1}{2006}=2005+\dfrac{1}{2006}\)

Phương trình tương đương:

\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2005+\dfrac{1}{2006}+\dfrac{2005}{2006}\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2006\)

TH1: \(x\ge2\): \(x-1+x-2=2006\Rightarrow2x=2009\Rightarrow x=\dfrac{2009}{2}\)

TH2: \(x\le1\) : \(1-x+2-x=2006\Rightarrow-2x=2003\Rightarrow x=\dfrac{-2003}{2}\)

TH3: \(1< x< 2:\) \(x-1+2-x=2006\Rightarrow3=2006\) (vô nghiệm)

Vậy \(\left[{}\begin{matrix}x=\dfrac{2009}{2}\\x=\dfrac{-2003}{2}\end{matrix}\right.\)

Yim Yim
Xem chi tiết
Trần Hữu Ngọc Minh
Xem chi tiết
Thu Hằng
26 tháng 8 2017 lúc 19:20

khó thế/////

Ben 10
26 tháng 8 2017 lúc 19:22

Cho hình bình hành ABCD,Đường phân giác góc D cắt AB tại M,Chứng minh AM = AD,Đường phân giác góc B cắt CD tại N,Chứng minh tứ giác MBND là hình bình hành,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

ko chi tiết lắm

Nguyễn Anh Khoa
Xem chi tiết
Neet
10 tháng 2 2017 lúc 22:22

hướng làm :

\(x^4=2006-\sqrt{x^2+2006}\)

\(\Leftrightarrow x^4+x^2+\frac{1}{4}=x^2+2006-\sqrt{x^2+2006}+\frac{1}{4}\)

\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\left(\sqrt{x^2+2006}-\frac{1}{2}\right)^2\)

ok ?

Trần Hữu Ngọc Minh
Xem chi tiết
nguyen kim chi
Xem chi tiết
Mr Lazy
2 tháng 7 2015 lúc 13:35

\(x-\sqrt{x^2-1}=\frac{x^2-\left(x^2-1\right)}{x+\sqrt{x^2-1}}=\frac{1}{x+\sqrt{x^2-1}}=t\)\(\Rightarrow x+\sqrt{x^2-1}=\frac{1}{t}\)

Ta có: \(\left(1+t\right)^{2015}+\left(1+\frac{1}{t}\right)^{2015}=2^{2016}\)(1)

Áp dụng Côsi ta có: 

\(1+t\ge2\sqrt{t}\Rightarrow\left(1+t\right)^{2015}\ge2^{2015}.\sqrt{t^{2015}}\)

\(1+\frac{1}{t}\ge\frac{2}{\sqrt{t}}\Rightarrow\left(1+\frac{1}{t}\right)^{2015}\ge\frac{2^{2015}}{\sqrt{t^{2015}}}\)

\(\Rightarrow\left(1+t\right)^{2015}+\left(1+\frac{1}{t}\right)^{2015}\ge2^{2015}\left(\sqrt{t^{2015}}+\frac{1}{\sqrt{t^{2015}}}\right)\)

\(\ge2^{2015}.2\sqrt{\sqrt{t^{2015}}.\frac{1}{\sqrt{t^{2015}}}}=2^{2016}\)

Dấu "=" xảy ra khi và chỉ khi t = 1.

Do đó, từ (1) => \(t=\frac{1}{x+\sqrt{x^2-1}}=1\Rightarrow x+\sqrt{x^2-1}=1\)

\(\Rightarrow1-x=\sqrt{x^2-1}\Rightarrow\left(1-x\right)^2=x^2-1\Leftrightarrow2-2x=0\Leftrightarrow x=1\)

Vậy: \(x=1\text{ là nghiệm (nguyên) duy nhất của phương trình.}\)

Lâm Minh Anh
Xem chi tiết
ngonhuminh
21 tháng 10 2016 lúc 1:22

x-2006=y

I(y+1)I^2005+IyI^2006=1 

=> y=0, y=-1

x=2006 hoac x=2005

Hồ Thị Hải Yến
Xem chi tiết
Trịnh Ngọc Lực
Xem chi tiết