\(1+\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{18}{3^{18}}\)
a, 1\(\dfrac{5}{18}\)+\(\dfrac{7}{25}\)-\(\dfrac{5}{18}\)+\(\dfrac{18}{25}\)-0, 75
b, \(\dfrac{2}{5}\).\(\dfrac{1}{3}\)-\(\dfrac{4}{3}\).\(\dfrac{2}{5}\)
c, (\(\dfrac{-1}{4}\)).( 6\(\dfrac{2}{11}\)) + 3 \(\dfrac{9}{11}\).(\(\dfrac{-1}{4}\))
d, 4. (-\(\dfrac{1}{2}\))\(^{3_{ }}\)-\(_{ }\)2. (\(\dfrac{-1}{2}\))\(^2\) + 3. (\(\dfrac{-1}{2}\)) + 1
e, \(\dfrac{1}{6}\)-(\(\dfrac{2}{3}\))\(^2\) + \(\dfrac{5}{18}\)
f, (\(\dfrac{4}{3}\)-\(\dfrac{3}{2}\))\(^2\)- 2.|-\(\dfrac{1}{9}\)| + (-\(\dfrac{5}{18}\))
e: \(=\dfrac{1}{6}-\dfrac{4}{9}+\dfrac{5}{18}=\dfrac{3-8+5}{18}=0\)
\(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{2}{18}+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{19}+\dfrac{1}{20}}\)
\(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)
Biến đổi tử số
\(19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}\)
= 1 + \(\left(1+\dfrac{18}{2}\right)+\left(1+\dfrac{17}{3}\right)+\left(1+\dfrac{16}{4}\right)+...+\left(1+\dfrac{1}{19}\right)\)
= \(\dfrac{20}{20}+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{1}{19}\)
= 20 x \(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)\)
Vậy \(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)
= \(\dfrac{20\times\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}=20\)
Vậy A = 20
Tính:
\(\dfrac{2}{5}+\dfrac{1}{5}\) \(\dfrac{2}{3}+\dfrac{5}{3}\) \(\dfrac{3}{8}+\dfrac{4}{8}\)
\(\dfrac{6}{9}+\dfrac{2}{9}\) \(\dfrac{12}{18}+\dfrac{7}{18}\) \(\dfrac{7}{4}+\dfrac{2}{4}\)
\(\dfrac{2}{5}+\dfrac{1}{5}=\dfrac{2+1}{5}=\dfrac{3}{5}\)
\(\dfrac{2}{3}+\dfrac{5}{3}=\dfrac{2+5}{3}=\dfrac{7}{3}\)
\(\dfrac{3}{8}+\dfrac{4}{8}=\dfrac{3+4}{8}=\dfrac{7}{8}\)
\(\dfrac{6}{9}+\dfrac{2}{9}=\dfrac{6+2}{9}=\dfrac{8}{9}\)
\(\dfrac{12}{18}+\dfrac{7}{18}=\dfrac{12+7}{18}=\dfrac{19}{18}\)
\(\dfrac{7}{4}+\dfrac{2}{4}=\dfrac{7+2}{4}=\dfrac{9}{4}\)
Tính
\(\dfrac{\dfrac{1}{9}+\dfrac{2}{18}+\dfrac{3}{17}+...+\dfrac{18}{2}+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}\)
\(=\dfrac{\left(\dfrac{1}{19}+1\right)+\left(\dfrac{2}{18}+1\right)+...+\left(\dfrac{18}{2}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}\)
\(=\dfrac{\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}+\dfrac{20}{20}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}=20\)
Rút gọn rồi quy đồng mẫu số các phân số (theo mẫu).
Mẫu: \(\dfrac{5}{15}\) và \(\dfrac{4}{18}\) - \(\dfrac{5}{15}=\dfrac{1}{3}\); \(\dfrac{4}{18}=\dfrac{2}{9}\) - \(\dfrac{1}{3}=\dfrac{1\times3}{3\times3}=\dfrac{3}{9}\) |
a) \(\dfrac{2}{36}\) và \(\dfrac{8}{12}\)
b) \(\dfrac{10}{25}\) và \(\dfrac{14}{40}\)
a) \(\dfrac{2}{36}=\dfrac{1}{18}\)
\(\dfrac{8}{12}=\dfrac{2}{3}\)
b) \(\dfrac{10}{25}=\dfrac{2}{5}\)
\(\dfrac{14}{40}=\dfrac{7}{20}\)
Tính:
\(\dfrac{\dfrac{1}{19}+\dfrac{2}{18}+\dfrac{3}{17}+.....\dfrac{18}{2}+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{19}+\dfrac{1}{20}}\)
Ta có: \(\dfrac{1}{19}+\dfrac{2}{18}+...+\dfrac{19}{1}=\left(\dfrac{1}{19}+1\right)+\left(\dfrac{2}{18}+1\right)+...+1\)
\(=\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}+\dfrac{20}{20}=20\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}\right)\)
Thế lại bài toán ta được
\(\dfrac{\dfrac{1}{19}+\dfrac{2}{18}+...+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}=\dfrac{20\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}=20\)
Ta có
\(\dfrac{1}{19}+\dfrac{2}{18}+\dfrac{3}{17}+...+\dfrac{19}{1}\\ =\dfrac{1}{19}+1+\dfrac{2}{18}+1+\dfrac{3}{17}+1+...+\dfrac{19}{1}+1-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+\dfrac{20}{17}+...+\dfrac{20}{1}-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}+20-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+\dfrac{20}{17}+...+\dfrac{20}{2}+1+19-19\\ =\dfrac{20}{20}+\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}\\ =20\cdot\left(\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}\right)\)
Thế vào ta có:
\(\dfrac{\dfrac{1}{19}+\dfrac{2}{18}+\dfrac{3}{17}+...+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\\ =\dfrac{20\cdot\left(\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}\right)}{\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}}\\ =20\)
\(\dfrac{15}{12}+\dfrac{5}{13}-\dfrac{3}{12}-\dfrac{18}{13}-\dfrac{1}{3}\)
\(14.\dfrac{3}{2}+\dfrac{6}{5}:\left(\dfrac{-2}{5}\right)\)
\(\sqrt{\dfrac{1}{4}+\dfrac{2}{3}-\left(\dfrac{1}{3}\right)^2}\)
\(\dfrac{15}{12}+\dfrac{5}{13}-\dfrac{3}{12}-\dfrac{18}{13}-\dfrac{1}{3}\)
\(=\left(\dfrac{15}{12}-\dfrac{3}{12}\right)+\left(\dfrac{5}{13}-\dfrac{18}{13}\right)-\dfrac{1}{3}\)
\(=-1+1-\dfrac{1}{3}\)
\(=0-\dfrac{1}{3}\)
\(=\dfrac{-1}{3}\)
------------------------------------------
\(14.\dfrac{3}{2}+\dfrac{6}{5}:\left(-\dfrac{2}{5}\right)\)
\(=14.\dfrac{3}{2}+\dfrac{6}{5}.\dfrac{-5}{2}\)
\(=21+\dfrac{6}{5}.\dfrac{-5}{2}\)
\(=21+\left(-3\right)\)
\(=18\)
------------------------------------------------
\(\sqrt{\dfrac{1}{4}+\dfrac{2}{3}-\left(\dfrac{1}{3}\right)^2}\)
\(=\sqrt{\dfrac{1}{4}+\dfrac{2}{3}-\dfrac{1}{9}}\)
\(=\sqrt{\dfrac{3}{12}+\dfrac{8}{12}-\dfrac{1}{9}}\)
\(=\sqrt{\dfrac{11}{12}-\dfrac{1}{9}}\)
\(=\sqrt{\dfrac{99}{108}-\dfrac{12}{108}}\)
\(=\sqrt{\dfrac{29}{36}}\)
\(=\dfrac{\sqrt{29}}{6}\)
\(\dfrac{15}{12}+\dfrac{5}{13}-\dfrac{3}{12}-\dfrac{18}{13}-\dfrac{1}{3}\)
\(=\dfrac{5}{4}+\dfrac{5}{13}-\dfrac{1}{4}-\dfrac{18}{13}-\dfrac{1}{3}\)
\(=\left(\dfrac{5}{4}-\dfrac{1}{4}\right)+\left(\dfrac{5}{13}-\dfrac{18}{13}\right)-\dfrac{1}{3}\)
\(=1+\left(-1\right)-\dfrac{1}{3}=0-\dfrac{1}{3}=-\dfrac{1}{3}\)
a : ( \(\dfrac{1}{3}\) )2 = ( \(\dfrac{1}{3}\) )3 Số a là
A \(\dfrac{1}{3}\)
B ( \(\dfrac{1}{3}\)) 5
C ( \(\dfrac{1}{3}\)) 6
D \(\dfrac{1}{18}\)
B và xin bạn hãy giải rùm mình bài toán trên
1/ \(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)
2/ \(\dfrac{5x-2}{5}-2=\dfrac{1-2x}{3}\)
3/ \(\dfrac{x-2}{2}-\dfrac{2}{3}=x-1\)
4/ \(\dfrac{2x-1}{3}+\dfrac{3x-2}{4}=\dfrac{4x-3}{5}\)
5/ \(\dfrac{x-3}{9}-\dfrac{x+2}{6}=\dfrac{x+4}{18}-\dfrac{1}{2}\)
1: Ta có: \(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)
\(\Leftrightarrow2x-8+12x=4x-2\)
\(\Leftrightarrow10x=6\)
hay \(x=\dfrac{3}{5}\)
2: Ta có: \(\dfrac{5x-2}{5}-2=\dfrac{1-2x}{3}\)
\(\Leftrightarrow15x-6-30=10-20x\)
\(\Leftrightarrow35x=46\)
hay \(x=\dfrac{46}{35}\)
3: Ta có: \(\dfrac{x-2}{2}-\dfrac{2}{3}=x-1\)
\(\Leftrightarrow3x-6-4=6x-6\)
\(\Leftrightarrow-3x=4\)
hay \(x=-\dfrac{4}{3}\)
1)\(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)
\(\Leftrightarrow\dfrac{\left(x-4\right).2}{3.2}+\dfrac{2x.6}{6}=\dfrac{4x-2}{6}\)
\(\Rightarrow2x-8+12x=4x-2\\ \Leftrightarrow10x=6\\ \Leftrightarrow x=\dfrac{3}{5}\)
4: Ta có: \(\dfrac{2x-1}{3}+\dfrac{3x-2}{4}=\dfrac{4x-3}{5}\)
\(\Leftrightarrow40x-20+45x-30=48x-36\)
\(\Leftrightarrow37x=14\)
hay \(x=\dfrac{14}{37}\)
5: Ta có: \(\dfrac{x-3}{9}-\dfrac{x+2}{6}=\dfrac{x+4}{18}-\dfrac{1}{2}\)
\(\Leftrightarrow2x-6-3x-6=x+4-9\)
\(\Leftrightarrow-x-x=-5-12=-17\)
hay \(x=\dfrac{17}{2}\)