cho x+y=-3 và x.y=-28.tính giá trị các biểu thức theo m,n
a, x^2+y^2
b,x^3+y^3
c,x^4+y^4
cho x+y=3 x.y=5 tính giá trị các biểu thức sau a) x^2+y^2. b) x^3+y^3 c) x^4+y^4
Đề sai rồi, không thể tồn tại x; y sao cho \(\left\{{}\begin{matrix}x+y=3\\xy=5\end{matrix}\right.\) được
Vì \(\left(x+y\right)^2\ge4xy;\forall x;y\) nên \(3^2>4.5\) là vô lý
a: \(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2\cdot5=-1\)
b: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3\cdot3\cdot5=-18\)
1 . Cho x+y=a và x.y=b . Tính giá trị biểu thức sau theo a và b :
a) x2 + y2
b) x3 + y3
c) x4 + y4
d) x5 + y5
2 . Cho x+y=1 .Tính giá trị biểu thức x3 + y3 + 3xy và x-y=1 .Tính giá trị biểu thức x3 - y3 - 3xy
3 . Cho a+b=1 . Tính giá trị biểu thức : M = a3 + b3 + 3ab .( 12 + b2 ) + 6.a2 .b2 . ( a+b)
Cho x+y=a và x.y=b .Tính giá trị biểu thức sau theo a và b :
a) x2 + y2
b) x3 +y3
c) x4 + y4
d) x5 + y5
cho x+y= -3 và x.y= -28
Tính giá trị của biểu thức x^4 + y^4
Ta có : x^4+y^4
=(x^2)^2 + (y^2)^2
=(x^2)^2+2x^2y^2+(y^2)^2-2x^2y^2
=(x^2+y^2)^2-2.(xy)^2
=[(-3)^2]^2-2.(-28)^2
=81-2.784
=81-1568
=-1487
Bài 1: Cho x + y = -3 và x.y = -28. Tính giá trị các biểu thức sau theo m,n.
a) x^2 + y^2 b) x^3 + y^3 c) x^4 + y^4
Bài 2: Chứng minh rằng:
a) a^2 + b^2 + c^2 +d^2 >_ ab+ac+ad
b) a^2 + 4b^2 +4c^2 >_ 4ab - 4ac + 8bc
Bài 3: Chứng minh rằng:
Nếu x + y + z = 0 thì x^3 + y^3 + z^ 3 = 3xyz
Bài 4: Chứng minh : a^2 + 4b^2 + 4c^2 >_ 4ab - 4ac + 8bc
( Viết về dạng bình phương của một tổng)
GIÚP MÌNH VỚI Ạ!!!!!!!!!!!!
Bài 1 :
a) \(x^2+y^2\)
\(\Leftrightarrow x^2+2xy+y^2-2xy\)
\(\Leftrightarrow\left(x+y\right)^2-2xy=\left(-3\right)^2-2.\left(-28\right)=65\)
b) \(x^3+y^3\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\Leftrightarrow\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)\)
\(\Leftrightarrow\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=\left(-3\right)\left[\left(-3\right)^2-3.\left(-28\right)\right]=-279\)
c) \(x^4+y^4\)
\(\Leftrightarrow\left(x+y\right)^4-4x^3y-4xy^3-6x^2y^2=\left(-3\right)^4-4\left(-28\right).65-6\left(-28\right)^2=2657\)
Bài 3:
Có: \(x^3+y^3+z^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3\)
=> \(x^3+y^3+z^3=\left(-z\right)^3-3xy.-z+z^3\)
=> \(x^3+y^3+z^3=-z^3+z^3+3xyz=3xyz\)
=> TA CÓ ĐPCM.
VẬY \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)
Bài 2 :
a) Giả sử \(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
\(\Leftrightarrow a^2+b^2+c^2+d^2-ab-ac-ad\ge0\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2-4ab-4ac-4ad\ge0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d^2\right)\ge0\)( luôn đúng )
\(\RightarrowĐPCM\)
b) Sửa đề : \(a^2+4b^2+4c^2\ge2ab-2ac+4bc\)
Ta có : \(\left(a+2c\right)^2\ge0\Leftrightarrow a^2+4c^2\ge-4ac\left(1\right)\)
Áp dụng BĐT Cô - si ta có :
\(\hept{\begin{cases}a^2+4b^2\ge4ab\left(2\right)\\4b^2+4c^2\ge8bc\left(3\right)\end{cases}}\)
(1) + (2) + (3)
\(\Leftrightarrow2a^2+8b^2+8c^2\ge4ab-4ac+8bc\)
\(\Leftrightarrow2\left(a^2+4b^2+4c^2\right)\ge4\left(ab-ac+2bc\right)\)
\(\Leftrightarrow a^2+4b^2+4c^2\ge2ab-2ac+4bc\)
Cho x + y = a và x.y = b.
Tính giá trị các biểu thức theo a, b:
a) x2 + y2
b) x3 + y3
c) x4 + y4
d) x5 + y5
1.Cho x+y =3 , x.y=2. Tính giá trị của các biểu thức: a) A=x2 +y2 b) B= x3+ y3 c) C= x4+ y4
2. Cho x-y = 2. Tính giá trị của P= 2. ( x3-y3) - 3.(x+y)2
Bài 1:Cho x,y thỏa mãn x+y=-1 và x.y=-12
Tính giá trị các biểu thức
a) A= x2+2xy+y2
b) B= x2+y2
c) C= x3+3xy.(x+y)+y3
d) D= x3+y3
Bài 2:cho x+y=1. Tính giá trị biểu thức
M= 3.(x2+y2)-2.(x3+y3)
Bài 3: Cho x+y=-3 và x2+y2=29
Tính x3+y3
Bài 4: cho x-y=5 và x2+y2=15. Tính x3-y3
Bài 1.
A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1
B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25
C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )
= -1( 25 + 12 ) + 3.(-12).(-1)
= -37 + 36
= -1
D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37
Bài 2.
M = 3( x2 + y2 ) - 2( x3 + y3 )
= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )
= 3( x2 + y2 ) - 2( x2 - xy + y2 )
= 3x2 + 3y2 - 2x2 + 2xy - 2y2
= x2 + 2xy + y2
= ( x + y )2 = 12 = 1
Bài 3.
x + y = -3
<=> ( x + y )2 = 9
<=> x2 + 2xy + y2 = 9
<=> 29 + 2xy = 9
<=> 2xy = -20
<=> xy = -10
x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = ( -3 )3 - 3.(-10).(-3) = -27 - 90 = -117
Bài 4.
x - y = 5
<=> ( x - y )2 = 25
<=> x2 - 2xy + y2 = 25
<=> 15 - 2xy = 25
<=> 2xy = -10
<=> xy = -5
x3 - y3 = ( x3 - 3x2y + 3xy2 - y3 ) + 3x2y - 3xy2 = ( x - y )3 + 3xy( x - y ) = 53 + 3.(-5).5 = 125 - 75 = 50
Tính giá trị của các biểu thức sau:
a)(x+y)3 với x2+y2=8 và x.y=4
b)(x-y)3 với x2+y2=16 và x.y=8
a) \(x^2+y^2=\left(x+y\right)^2-2xy\Rightarrow8=\left(x+y\right)^2-2.4\Rightarrow\orbr{\begin{cases}x+y=4\\x+y=-4\end{cases}.}\)
=>\(\left(x+y\right)^3=\orbr{\begin{cases}4^3=64\\\left(-4\right)^3=-64\end{cases}}.\)
Còn mình thì sẽ giải câu b (câu a bạn giải rất chính xác):
\(\left(x-y\right)^2=x^2+y^2-2xy\Rightarrow\)\(\left(x-y\right)^2=16-2.8=0\)
\(\Rightarrow\) \(x-y=0\)
\(\Rightarrow\left(x-y\right)^3=0^3=0\)