Chứng minh bằng qui nạp:
1/ Với 2≤n∈Z . CMR: 2<(1+
Chứng minh bằng qui nạp
a/ với 2 \(\le n\in Z\). CMR: 2< \(\left(1+\dfrac{1}{n}\right)^n< 3\)
b/ Với x, y > 0 và n \(\in N\)*. CMR : \(\left(x^2+y^2\right)^n\ge2^nx^ny^n+\left(x^n-y^n\right)^2\)
c/ Cho a+b = 2018. CMR : \(a^n+b^n\ge2.1009^n\). với mọi n\(\in\)N*
Chứng minh các mệnh đề sau bằng phương pháp qui nạp dãy số:
\(1+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\forall n\ge2\)
Chứng minh bằng qui nạp toán học: 13+23+33+...+n3=(1+2+3+...+n)2 với n\(\ge\)1
Chứng minh các mệnh đề sau theo phương pháp qui nạp dãy số:
\(1+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\forall n\ge2\)
Chứng minh rằng với mọi n thuộc N sao thì
\(n\left(2n^2-3n+1\right)\) chia hết cho 6
( sử dụng phương pháp qui nạp toán học)
\(=n\left(2n^2-2n-n+1\right)\)
\(=n\left(n-1\right)\left(2n-1\right)\)
TH1: n=3k
\(A=3k\left(3k-1\right)\left(6k-1\right)⋮3\)
mà A luôn chia hết cho 2(do n;n-1 là hai số liên tiếp)
nên A chia hết cho 6
TH2: n=3k+1
\(A=\left(3k+1\right)\left(3k+1-1\right)\left(6k+2-1\right)\)
\(=\left(3k+1\right)\left(3k\right)\cdot\left(6k+1\right)⋮3\)
=>A chia hết cho 6
TH3: n=3k+2
\(A=\left(3k+2\right)\left(3k+1\right)\left(6k+4-1\right)\)
\(=\left(3k+2\right)\left(3k+1\right)\left(6k+3\right)⋮6\)
Chứng minh bằng phương pháp qui nạp :
4 . 32n + 2 + 32n - 36 chia hết cho 64
Chứng minh bằng phương pháp qui nạp :
4 . 32n + 2 + 32n - 36 chia hết cho 64
Chứng minh bằng phương pháp qui nạp :
4 . 32n + 2 + 32n - 36 chia hết cho 64
CHỨNG MINH RẰNG:
Với n thuộc n*:
a, 2\(^n\)> 2n +1 ( n \(\ge\)3 )
b, 3\(^n\)> 3n +1 (n\(\ge\) 2 )
(cm bằng phương pháp qui nạp)
a) GIA SU n=3 (dung) 8>7
gia su dung voi moi k thuocN* (k>=3)
suy ra 2^k>2k+1 (k>=3)
\(2^{k+1}=2^k+2^k\)
<=>\(2^{k+1}>2\left(2k+1\right)\)
<=>\(2^{k+1}>4k+2\)
(2k>1 voi k>=3)=>\(4k+2>2k+3\)
<=>\(2^{k+1}>2k+3\)dung voi moi k thuoc N* (k>=3)
b) tuong tu
cho n là số dương CMR:
a) 2+4+6+...+2n=n(n+1)
b) 1^3+3^3+5^3+...+(2n-1)^3=2n(2n^2-1)
chứng minh bằng PP quy nạp