Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Lê Hoàn Nguyên
Xem chi tiết
Tran Hai
Xem chi tiết
Phùng Minh Quân
17 tháng 9 2018 lúc 19:13

Đặt \(A=\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(-A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)

\(-A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)

\(-A=1-\frac{1}{99}\)

\(-A=\frac{98}{99}\)

\(A=\frac{-98}{99}\)

Chúc bạn học tốt ~ 

Linh Hương
17 tháng 9 2018 lúc 19:23

Đặt A = \(\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

=> - A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)

- A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)

- A = \(1-\frac{1}{99}\)

- A = \(\frac{98}{99}\)

=> A = \(-\frac{98}{99}\)

Vậy A = \(-\frac{98}{99}\)

Hok tốt

Chàng Trai 2_k_7
26 tháng 9 2018 lúc 13:00

\(A=\frac{1}{99.98}-...-\frac{1}{2.1}\)

\(-A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)

\(-A=\frac{1}{1}-\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)

\(-A=1-\frac{1}{99}\)

\(-A=\frac{98}{99}\Leftrightarrow A=\frac{-98}{99}\)

Lang Chanh Th Tan Phuc 1
Xem chi tiết
Nguyễn Ngọc Quý
5 tháng 9 2015 lúc 20:37

Đặt A = \(\frac{1}{99}-\frac{1}{99.98}-.....-\frac{1}{2.1}\)

\(A=\frac{1}{99}-\left[-\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{98.99}\right)\right]\)

\(A=\frac{1}{99}+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-.....-\frac{1}{99}\right)\)

\(A=\frac{1}{99}+\left(1-\frac{1}{99}\right)\)

\(A=\frac{1}{99}+\frac{98}{99}=1\)

Ben Tennyson
Xem chi tiết
nghia
11 tháng 6 2017 lúc 8:17

     \(\frac{1}{100.99}-\frac{1}{99.98}-......-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=-\left(-\frac{1}{100.99}+\frac{1}{99.98}+...........+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

\(=-\left(-\frac{1}{100}-\frac{1}{99}+\frac{1}{99}-\frac{1}{98}+......+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\right)\)

\(=-\left(-\frac{1}{100}-1\right)\)

\(=\frac{1}{100}+1\)

\(=\frac{101}{100}\)

Nguyễn Thị Quỳnh Dương
Xem chi tiết
DSQUARED2 K9A2
16 tháng 9 2023 lúc 15:29

Lần sau nhớ chọn đúng môn

Lưu Nguyễn Hà An
16 tháng 9 2023 lúc 15:32

Uk, Long cứ đợi ng ta trả lời xong long làm giống là đc ý mà!

Lưu Nguyễn Hà An
16 tháng 9 2023 lúc 15:35

Xin lỗi Long vì có hơi bực nên mới nói vậy, mong bn bỏ qua

Nguyễn thị thu trang
Xem chi tiết
Nguyệt
25 tháng 8 2018 lúc 21:52

\(C=\frac{1}{100}-\left(\frac{1}{100.99}+\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

\(C=\frac{1}{100}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)

\(C=\frac{1}{100}-\frac{99}{100}\)

\(C=-\frac{98}{100}=-\frac{49}{50}\)

Edogawa Conan
25 tháng 8 2018 lúc 21:52

\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

   \(=\frac{1}{100}-\left(\frac{1}{100.99}+\frac{1}{99.98}+\frac{1}{98.97}+....+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

    \(=\frac{1}{100}-\left(\frac{1}{100}-\frac{1}{99}+\frac{1}{99}-\frac{1}{98}+\frac{1}{98}-\frac{1}{97}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\right)\)

      \(=\frac{1}{100}-\left(\frac{1}{100}-1\right)\)

      \(=1\)

I don
25 tháng 8 2018 lúc 21:53

\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-\frac{1}{3.2}-\frac{1}{2.1}\)

\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=\frac{-98}{100}=\frac{-49}{50}\)

Anh Dũng Lê
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
9 tháng 4 2018 lúc 12:41

Ta có : \(\frac{1}{2010.2009}-\frac{1}{2009.2008}-\frac{1}{2008.2007}-.....-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{2010.2009}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2008.2009}\right)\)

\(=\frac{1}{2010.2009}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2008}-\frac{1}{2009}\right)\)

\(=\frac{1}{2010.2009}-\left(1-\frac{1}{2009}\right)\)

\(=\frac{1}{2010.2009}-1+\frac{1}{2009}=\frac{1}{2010.2009}-\frac{2010.2009}{2010.2009}+\frac{2010}{2010.2009}\)

\(=\frac{1-2010.2009+2010}{2009.2010}=\frac{-4036079}{4038090}\)

Bibi Sky
Xem chi tiết
Daring Ben Silver
22 tháng 5 2015 lúc 17:03

a,=(1/3+3/5+1/15)+(3/4+-1/36)+(1/72-2/9)=1+26/36-15/72=1+(52-15)/72=1+37/72=109/72

b,=1/100-(1/1x2+1/2x3+...+1/97x98+1/98x99+1/99x100)

   =1/100-(1/1-1/2+1/2-1/3+...+1/97-1/98+1/98-1/99+1/99-1/100)

   =1/100-(1/1-1/100)=1/100-99/100=-98/100=-49/50

chỉ có mk mk giải thôi đó l-i-k-e đi

Hotgirl xinh đẹp
11 tháng 6 2017 lúc 8:15

mình cũng đang bí bài này

Thúy Hằng
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 3 2021 lúc 22:08

Sửa đề: \(\left(m-1\right)x^2+3mx-4m+1=0\)

Ta có: \(\Delta=\left(3m\right)^2-4\cdot\left(-4m+1\right)\left(m-1\right)=9m^2-4\left(-4m^2+4m+m-1\right)\)

\(=9m^2+16m^2-20m+4\)

\(=25m^2-20m+4\)

\(=\left(5m-2\right)^2\ge0\forall m\)

hay phương trình luôn có nghiệm với mọi m

Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3m}{m-1}\\x_1\cdot x_2=\dfrac{-4m+1}{m-1}\end{matrix}\right.\)

Vì \(x_1+x_2=\dfrac{-3m}{m-1}\) và \(2x_1=3x_2\) nên ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3m}{m-1}\\2x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=\dfrac{-6m}{m-1}\\2x_1-3x_2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x_2=\dfrac{-6m}{m-1}\\x_1+x_2=\dfrac{-3m}{m-1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-6m}{5m-5}\\x_1=\dfrac{-9m}{5m-5}\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=\dfrac{-4m+1}{m-1}\)

\(\Leftrightarrow\dfrac{-6m}{5m-5}\cdot\dfrac{-9m}{5m-5}=\dfrac{-4m+1}{m-1}\)

\(\Leftrightarrow\dfrac{54m^2}{5m-5}=\dfrac{-20m+5}{5m-5}\)

Suy ra: \(54m^2+20m-5=0\)

\(\Delta=20^2-4\cdot54\cdot\left(-5\right)=1480\)

Đến đây bạn tự làm tiếp nhé, chỉ cần tìm m và so sánh với ĐK m khác 1 thôi