a. (1+1/x)(1+1/x)(1+1/z)>=64 với x+y+z=1
b. yz/x+zx/y+xy/z>=x+y+z
Dùng Cô-si nhé
chứng minh A=(xy+zx+1)/(xy+x+y+1)+(yz+zy+1)/(yz+y+z+1)+(zx+zx+1)/(zx+x+z+1) không thuộc x, y, z
làm nhanh giùm mình nha ! đang cần gấp <:)
chứng minh rằng: (x-y)/(1+xy) + (y-z)/(1+yz) +(z-x)/(1+zx) = (x-y)(y-z)(z-x)/(1+xy)(1+yz)(1+zx)
Ta có:
\(\dfrac{x-y}{1+xy}\)+\(\dfrac{y-z}{1+yz}\)+\(\dfrac{z-x}{1+xz}\) = \(\dfrac{x-y}{1+xy}\)+\(\dfrac{-\left(x-y\right)-\left(z-x\right)}{1+yz}\)+\(\dfrac{z-x}{1+xz}\)
=\(\dfrac{x-y}{1+xy}\)\(-\dfrac{x-y}{1+yz}\) \(-\dfrac{z-x}{1+yz}\)+\(\dfrac{z-x}{1+xz}\)
= \(\left(x-y\right)\)\(\left(\dfrac{\left(1+yz\right)-\left(1+xy\right)}{\left(1+yz\right)\left(1+xy\right)}\right)\)+(\(z-x\))\(\left(\dfrac{\left(1+yz\right)-\left(1+zx\right)}{\left(1+yz\right)\left(1+zx\right)}\right)\)
=\(\left(x-y\right)\)\(\dfrac{y\left(z-x\right)}{\left(1+yz\right)\left(1+xy\right)}\)+(\(z-x\))\(\dfrac{-z\left(x-y\right)}{\left(1+yz\right)\left(1+zx\right)}\)
=\(\left(\dfrac{\left(x-y\right)\left(z-x\right)}{1+yz}\right)\)\(\left(\dfrac{y\left(1+xz\right)-z\left(1+xy\right)}{\left(1+xz\right)\left(1+xy\right)}\right)\)
=đpcm
\(\dfrac{xyz-xy-yz-zx+x+y+z-1}{xyz+xy+yz-zx-x+y-z-1}\) với x = 5001;y=5002;z=5003
\(=\dfrac{xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)}{xy\left(z+1\right)+y\left(z+1\right)-x\left(z+1\right)-\left(z+1\right)}\\ =\dfrac{\left(z-1\right)\left(xy-y-x+1\right)}{\left(z+1\right)\left(xy+y-x-1\right)}=\dfrac{\left(z-1\right)\left(x-1\right)\left(y-1\right)}{\left(z+1\right)\left(x+1\right)\left(y-1\right)}=\dfrac{\left(z-1\right)\left(x-1\right)}{\left(z+1\right)\left(x+1\right)}\\ =\dfrac{\left(5003-1\right)\left(5001-1\right)}{\left(5003+1\right)\left(5001+1\right)}=\dfrac{5002\cdot5000}{5004\cdot5002}=\dfrac{5000}{5004}=\dfrac{1250}{1251}\)
cm P=1/x+y+z * 1/xy+yz+zx * (1/y+1/x+1/z)*(1/xy+1/yz+1/zx) luôn dương với mọi giá trị của x,y,z
cho x, y, z khác 1 chứng minh giá trị sau không phụ thuộc vào biến x, y, z.( xy+2x+1/xy+x+y+1)+(yz+2y+1/yz+y+z+1)+(zx+2z+1/zx+z+x+1)
Sửa lại đề là x;y;z khác -1.
\(A=\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+y+z+1}+\frac{zx+2z+1}{zx+z+x+1}=\)
\(A=\frac{x\left(y+1\right)+x+1}{x\left(y+1\right)+y+1}+\frac{y\left(z+1\right)+y+1}{y\left(z+1\right)+z+1}+\frac{z\left(x+1\right)+z+1}{z\left(x+1\right)+x+1}=\)
\(A=\frac{x\left(y+1\right)+x+1}{\left(x+1\right)\left(y+1\right)}+\frac{y\left(z+1\right)+y+1}{\left(y+1\right)\left(z+1\right)}+\frac{z\left(x+1\right)+z+1}{\left(z+1\right)\left(x+1\right)}=\)vì x;y;z khác -1 nên:
\(A=\frac{x}{x+1}+\frac{1}{y+1}+\frac{y}{y+1}+\frac{1}{z+1}+\frac{z}{z+1}+\frac{1}{x+1}=\)
\(A=\frac{x}{x+1}+\frac{1}{x+1}+\frac{y}{y+1}+\frac{1}{y+1}+\frac{z}{z+1}+\frac{1}{z+1}=\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}=1+1+1=3\)
A = 3 với mọi x;y;z khác -1 nên A không phụ thuộc vào x;y;z. đpcm
Chứng minh rằng: \(\frac{x-y}{1+xy}+\frac{y-z}{1+yz}+\frac{z-x}{1+zx}=\frac{x-y}{1+xy}\cdot\frac{y-z}{1+yz}\cdot\frac{z-x}{1+zx}\)
Cho x; y; z >0, thoả mãn: 1/xy+ 1/yz+1/zx =1
Q= x/√yz × (x^2 +1)+ y/√zx × (y^2 +1) + z/√xy × ( z^2 +1)
cho A = \(\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+y+z+1}+\frac{zx+2z+1}{zx+z+x+1}\)với x,y,z\(\ne\)-1