Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huy
Xem chi tiết
Huy
20 tháng 12 2020 lúc 7:54

làm nhanh giùm mình nha ! đang cần gấp <:)

Khách vãng lai đã xóa
LA LA LAND
Xem chi tiết
LA LA LAND
29 tháng 12 2018 lúc 16:07

ai giúp mình với

LA LA LAND
29 tháng 12 2018 lúc 16:10

...

Nguyễn Minh Đạt
13 tháng 5 lúc 22:39

Ta có:
         \(\dfrac{x-y}{1+xy}\)+\(\dfrac{y-z}{1+yz}\)+\(\dfrac{z-x}{1+xz}\) = \(\dfrac{x-y}{1+xy}\)+\(\dfrac{-\left(x-y\right)-\left(z-x\right)}{1+yz}\)+\(\dfrac{z-x}{1+xz}\)

         =\(\dfrac{x-y}{1+xy}\)\(-\dfrac{x-y}{1+yz}\) \(-\dfrac{z-x}{1+yz}\)+\(\dfrac{z-x}{1+xz}\) 

         = \(\left(x-y\right)\)\(\left(\dfrac{\left(1+yz\right)-\left(1+xy\right)}{\left(1+yz\right)\left(1+xy\right)}\right)\)+(\(z-x\))\(\left(\dfrac{\left(1+yz\right)-\left(1+zx\right)}{\left(1+yz\right)\left(1+zx\right)}\right)\)

         =\(\left(x-y\right)\)\(\dfrac{y\left(z-x\right)}{\left(1+yz\right)\left(1+xy\right)}\)+(\(z-x\))\(\dfrac{-z\left(x-y\right)}{\left(1+yz\right)\left(1+zx\right)}\)

         =\(\left(\dfrac{\left(x-y\right)\left(z-x\right)}{1+yz}\right)\)\(\left(\dfrac{y\left(1+xz\right)-z\left(1+xy\right)}{\left(1+xz\right)\left(1+xy\right)}\right)\)

       =đpcm

manh nguyenvan
Xem chi tiết
Nguyễn Hoàng Minh
25 tháng 11 2021 lúc 20:43

\(=\dfrac{xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)}{xy\left(z+1\right)+y\left(z+1\right)-x\left(z+1\right)-\left(z+1\right)}\\ =\dfrac{\left(z-1\right)\left(xy-y-x+1\right)}{\left(z+1\right)\left(xy+y-x-1\right)}=\dfrac{\left(z-1\right)\left(x-1\right)\left(y-1\right)}{\left(z+1\right)\left(x+1\right)\left(y-1\right)}=\dfrac{\left(z-1\right)\left(x-1\right)}{\left(z+1\right)\left(x+1\right)}\\ =\dfrac{\left(5003-1\right)\left(5001-1\right)}{\left(5003+1\right)\left(5001+1\right)}=\dfrac{5002\cdot5000}{5004\cdot5002}=\dfrac{5000}{5004}=\dfrac{1250}{1251}\)

Nguyen Phu Tho
Xem chi tiết
Thanh Trúc
Xem chi tiết
Đinh Thùy Linh
25 tháng 6 2016 lúc 23:46

Sửa lại đề là x;y;z khác -1.

\(A=\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+y+z+1}+\frac{zx+2z+1}{zx+z+x+1}=\)

\(A=\frac{x\left(y+1\right)+x+1}{x\left(y+1\right)+y+1}+\frac{y\left(z+1\right)+y+1}{y\left(z+1\right)+z+1}+\frac{z\left(x+1\right)+z+1}{z\left(x+1\right)+x+1}=\)

\(A=\frac{x\left(y+1\right)+x+1}{\left(x+1\right)\left(y+1\right)}+\frac{y\left(z+1\right)+y+1}{\left(y+1\right)\left(z+1\right)}+\frac{z\left(x+1\right)+z+1}{\left(z+1\right)\left(x+1\right)}=\)vì x;y;z khác -1 nên:

\(A=\frac{x}{x+1}+\frac{1}{y+1}+\frac{y}{y+1}+\frac{1}{z+1}+\frac{z}{z+1}+\frac{1}{x+1}=\)

\(A=\frac{x}{x+1}+\frac{1}{x+1}+\frac{y}{y+1}+\frac{1}{y+1}+\frac{z}{z+1}+\frac{1}{z+1}=\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}=1+1+1=3\)

A = 3 với mọi x;y;z khác -1 nên A không phụ thuộc vào x;y;z. đpcm

Lăng
Xem chi tiết
Trang
Xem chi tiết
Nguyễn Trí Đức
Xem chi tiết
Nguyễn Bá Dương
Xem chi tiết