Cho tam giác ABC. Chứng minh rằng A + B +C = 180o
Cho tam giác ABC, qua A kẻ đường thẳng xy//BC a, Chứng minh: <xAB=<B; <yAC=C b, Chứng minh: <BAC+<B+<C=180o
Bài 3: Cho tam giác ABC, thỏa mãn 2∠B + 3∠C = 180o
. CMR: BC^2 = BC.AC + AB^2
Bài 4: Cho tam giác ABC. Chứng minh rằng các đường trung tuyến kẻ từ B và C vuông góc với
nhau khi và chỉ khi b^2 + c^2 = 5a^2
Bài 5: CMR: cos 36o = (1 + √5)/4
Bài 6: Cho tam giác ABC có (BC = a, CA = b, AB = c). Trung tuyến AD, đường cao BH và
phân giác CE đồng quy. CMR: (a + b)(a^2 + b^2 − c^2) = 2ab2
4/Gọi hai trung tuyến kẻ từ B, C là BM và CN, chúng cắt nhau tại O
Bây giờ ta sẽ chứng minh rằng : Nếu hai trung tuyến đó vuông góc thì b^2 + c^2 = 5a^2 , từ đó suy ra điều ngược lại (vì mệnh đề này đúng với thuận và đảo)
Gỉa sử BM vuông góc với CN tại O
Ta đặt OM = x => OB = 2x và => OC =2y
AB^2/4 + AC^2/4= NB^2 + MC^2 = ON^2 + OB^2 + OM^2 + OC^2 = 5(x^2 + y^2)
=> AB^2 + AC^2 = 20(x^2 + y^2)
Mà BC^2 = OC^2 + OB^2 = 4(x^2 + y^2)
Suy ra : AB^2 + AC^2 = 5.4(x^2 + y^2) = 5BC^2 hay b^2 + c^2 = 5a^2
ta có điều ngược lại là nếu b^2 + c^2 = 5a^2 thì hai trung tuyến vuông góc(cái này tự làm ngược nha bn)
5
Vẽ tam giác ABC cân tại A có góc A bằng 36 độ. Và BC=1.Khi đó góc B = góc C = 72 độ.
Vẽ BD phân giác góc B , DH vuông góc AB. Đặt AH=BH=x, ta có AB=AC=2x và DC=2x-1
Cm được tam giác ABD và BCD cân => AD=BD=BC=1
cos A = cos 36 = AH/AD=x/1=x
Vì BD là đường phân giác nên AD/DC=AB/AC => \(\frac{1}{2x-1}=\frac{2x}{1}\)
=> \(4x^2-2x-1=0\Leftrightarrow\left(2x-\frac{1}{2}\right)^2-\left(\frac{\sqrt{5}}{2}\right)^2=0\)
\(\Leftrightarrow\left(2x-\frac{1}{2}-\frac{\sqrt{5}}{2}\right)\left(2x-\frac{1}{2}+\frac{\sqrt{5}}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{4}\left(N\right)\\x=\frac{1-\sqrt{5}}{4}< 0\left(L\right)\end{cases}}\)
Vậy cos 36o = (1 + √5)/4
tam giác ABC có số đo các góc A,B,C tỉ lệ với 3,5,7 .Tính số đo các góc của tam giác ABC biết rằng tổng số đo ba trong 1 tam giác = 180o
Tam giác ABC có số đo 3 góc A, B , C tỉ lệ với 3; 5 ;7. Tính số đo các góc của tam giác ABC (biết rằng tổng số đo 3 góc trong một tam giác bằng 180o)
Gọi a, b, c (độ) lần lượt là số đo 3 góc A, B, C. (0 < a; b; c < 180º).
Theo định lí tổng ba góc của tam giác ta có:
a + b + c = 180.
Vì số đo 3 góc tỉ lệ với 3; 5; 7 nên ta có:
Vậy số đo ba góc của tam giác ABC là: 36o; 60o; 84o
Cho tam giác ABC =tam giác DEF ; = tam giác DEF =tam giác MNP
. a) Chứng minh rằng: AB= MN ; AC= MP; BC= NP ; A= M; B= N; C =P
. b) Chứng minh rằng tam giácABC =tam giác MNP.
a: Ta có: ΔABC=ΔDEF
nên AB=DE(1)
Ta có: ΔDEF=ΔMNP
nên DE=MN(2)
Từ (1) và (2) suy ra AB=MN
Cho tam giác ABC có AB+AC=2BC. Gọi M và N là trung điểm của AB và AC, gọi I là giao điểm các đường phân giác trong tam giác ABC. Chứng minh góc AMN + góc ANM=180o
cho tam giác ABC có B=60, C<A
a,chứng minh rằng AB<BC
b,trên BC lấy D sao cho BD=BA chứng minh rằng tam giác ABD đều
c,AB,BC,CA
a) xét ΔABC ta có
C<A
=> AB < BC ( quan hệ giữa góc và cạnh đối diện trong Δ)
b)xét ΔABD ta có
BD = BA
=> ΔABD là Δ cân tại B
mà B=60o
=> ΔABD làΔ đều
a) cho tam giác ABC . Chứng minh rằng : sin( B + C ) = sinA và cos \(\frac{A+B}{2}\) = sinC ; b) cho tam giác ABC có vector BA nhân vector BC = AB2 . Chứng minh rằng : tam giác ABC vuông ; c) chứng minh rằng : sin6a + cos6a + 3sin2acos2a = 1
a) Do A + B + C = 180 độ nên góc A bù với góc B + C => sin(B + C) = sinA (sin hai góc bù bằng nhau)
(A + B)/2 + C/2 = 90 độ => hai góc (A + B)/2 và C/2 là hai góc phụ nhau => cos (A + B)/2 = sin(C/2) (Chắc đề bài bạn cho nhầm thành sinC)
b) Bạn xem lại đề nhé
c) \(sin^6a+cos^6a+3sin^2a.cos^2a=\left(sin^2a\right)^3+\left(cos^2a\right)^3+3.sin^2a.cos^2a\)
= \(\left(sin^2a+cos^2a\right)\left(sin^4a+cos^4a-sin^2a.cos^2a\right)+3sin^2a.cos^2a\)
= \(sin^4a+cos^4a+2sin^2a.cos^2a\)
= \(\left(sin^2a+cos^2a\right)^2=1\)
Cho tam giác ABC nhọn có ba đường cao AK,BD,CE a. Chứng minh rằng: tam giác ABC ~ tam giác ACE b. Gọi H là giao điểm của AK, BD, CE. Chứng minh rằng :CH. CE=BC.CK c. Chứng minh rằng: BH. BD+CH. CE=BC^2
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc CAE chung
Do đó; ΔABD đồng dạng với ΔACE
b: Xét ΔCKH vuông tại K và ΔCEB vuông tại E có
góc ECK chung
Do đó: ΔCKH\(\sim\)ΔCEB
Suy ra: CK/CE=CH/CB
hay \(CH\cdot CE=CB\cdot CK\)