Cho các số thực a,b,c,d thỏa mãn:a+b+c+d=2.
CMR:\(a^2+b^2+c^2+d^2\ge1\)
\(\text{cho a,b,c,d thỏa mãn }\)\(c^2+d^2=(a^2+b^2)^3\).CMR \(\dfrac{a^3}{c}+\dfrac{b^3}{d}\ge1\)
Mn giúp e với
BĐT mà ghi thiếu điều kiện thì chết rồi, vì số thực, số dương, số không âm nó hoạt động khác nhau lắm
Bunhiacopxki: \(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(a^2+b^2\right)^4\)
\(\Rightarrow ac+bd\le\left(a^2+b^2\right)^2\)
Do đó:
\(\dfrac{a^3}{c}+\dfrac{b^3}{d}=\dfrac{a^4}{ac}+\dfrac{b^4}{bd}\ge\dfrac{\left(a^2+b^2\right)^2}{ac+bd}\ge\dfrac{\left(a^2+b^2\right)^2}{\left(a^2+b^2\right)^2}=1\) (đpcm)
Đề bài sai: phản ví dụ:
\(a=b=-1\) ; \(c=d=2\)
Khi đó: \(c^2+d^2=\left(a^2+b^2\right)^3\) nhưng \(\dfrac{a^3}{c}+\dfrac{b^3}{d}=-1< 1\)
Cho a,b,c,d là các số thực không âm thỏa \(a^2+b^2+c^2+d^2=4\). CMR:
\(2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{\sqrt{2}}\sqrt{2+ab+ac+ad+bc+bd+dc}\)
BĐT cần c/m tương đương:
\(2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{4+2\left(ab+ac+ad+bc+bd+cd\right)}\)
\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{\left(a+b+c+d\right)^2}\)
\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\left(a+b+c+d\right)\)
\(\Leftrightarrow4\left(a^3+b^3+c^3+d^3\right)\ge4+3\left(a+b+c+d\right)\)
Dễ dàng chứng minh điều này bằng AM-GM:
\(a^3+a^3+1+b^3+b^3+1+c^3+c^3+1+d^3+d^3+1\ge3a^2+3b^2+3c^2+3d^2\)
\(\Rightarrow2\left(a^3+b^3+c^3+d^3\right)+4\ge12\)
\(\Rightarrow a^3+b^3+c^3+d^3\ge4\) (1)
Lại có:
\(a^2+b^2+c^2+d^2\ge\dfrac{1}{4}\left(a+b+c+d\right)^2\)
\(\Rightarrow a+b+c+d\le4\) (2)
(1);(2) \(\Rightarrow4\left(a^3+b^3+c^3+d^3\right)\ge16\ge4+3.4\ge4+3\left(a+b+c+d\right)\) (đpcm)
tứ giác ABCD có các góc thỏa mãn:A/B/C/D=1/2/2/3 khi đó số đo các góc A,B,C,D theo thứ tự đó là
A/1=B/2=C/2=D/3=A+B+C+D/1+2+2+3=360/8=45
=>A=45 ,B=C=90,D=135
K NHAN
cho 6 số nguyên dương a,b,c,d,m,n thỏa mãn:
a<b<c<d<m<n
chứng minh rằng \(\dfrac{a+c+m}{a+b+c+d+m+n}< \dfrac{1}{2}\)
Do a < b < c < d < m < n
=> 2c < c + d
m< n => 2m < m+ n
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n)
Do đó :
\(\dfrac{\text{(a + c + m)}}{\left(a+b+c+d+m+n\right)}\) < \(\dfrac{1}{2}\)
Tìm các số nguyên dương a,b,c,d phân biệt thỏa mãn:
a+\(\dfrac{2\cdot b}{b+\dfrac{c}{c+\dfrac{d}{d+1}}}\)
Bạn nào làm nhanh mình tick cho.
Dấu ở giữa 2 và b là dấu nhân nhé!
cho a;b;c là các số thực dương thỏa mãn a2+b2+c2=1.CMR:\(\frac{a^2}{1+b-a}+\frac{b^2}{1+c-b}+\frac{c^2}{1+a-c}\ge1\)
Đầu tiên chứng minh:
\(a^3+b^3+c^3\ge ba^2+cb^2+ac^2\)
Ta có:
\(3\left(a^3+b^3+c^3\right)=\left(a^3+a^3+b^3\right)+\left(b^3+b^3+c^3\right)+\left(c^3+c^3+a^3\right)\)
\(\ge3\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow a^3+b^3+c^3\ge ba^2+cb^2+ac^2\)
Quay lại bài toán ta có:
\(\frac{a^2}{1+b-a}+\frac{b^2}{1+c-b}+\frac{c^2}{1+a-c}\)
\(=\frac{a^4}{a^2+a^2b-a^3}+\frac{b^4}{b^2+b^2c-b^3}+\frac{c^4}{c^2+c^2a-c^3}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+\left(a^3+b^3+c^3\right)-\left(a^3+b^3+c^3\right)}\)
\(=\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2=1\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^2}{1+b-a}+a^2\left(1+b-a\right)\ge2a^2\)
\(\frac{b^2}{1+c-b}+b^2\left(1+c-b\right)\ge2b^2\)
\(\frac{c^2}{1+a-c}+c^2\left(1+a-c\right)\ge2c^2\)
Cộng theo vế 3 BĐT trên ta có:
\(VT+a^2b+b^2c+c^2a-a^3-b^3-c^3\ge1\)
Cần chứng minh \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\)
Tiếp tục xài AM-GM \(a^3+a^3+b^3\ge3\sqrt[3]{a^6b^3}=3a^2b\)
TƯơng tự rồi cộng theo vế ta có ĐPCM
Xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Cho a,b,c,d là 4 số thực dương thỏa mãn a+b+c+d=1.CMR:
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{1}{2}\)
Áp dụng bđt Cosi ta có: \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2;\frac{b^2}{b+c}+\frac{b+c}{4}\ge2;\frac{c^2}{c+d}+\frac{c+d}{4}\ge2\)\(;\frac{d^2}{d+a}+\frac{d+a}{4}\ge2\)
Cộng theo vế và a+b+c+d=1 ta có đpcm
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{a^2}{a+b}=\frac{a+b}{4};\frac{b^2}{b+c}=\frac{b+c}{4};\frac{c^2}{c+d}=\frac{c+d}{4};\frac{d^2}{d+a}=\frac{d+a}{4}\\\\a=b=c=1\end{cases}}\)
\(\Leftrightarrow a=b=c=d=\frac{1}{4}\)
Bunyakovsky dạng phân thức
Theo bất đẳng thức Svacxo :
\(VT\ge\frac{\left(a+b+c+d\right)^2}{2\left(a+b+c+d\right)}=\frac{1}{2}\)
Đẳng thức xảy ra khi \(a=b=c=d=\frac{1}{4}\)
Vậy ta có điều phải chứng minh
cho các số thực dương a,b,c>0 thỏa mãn abc=1 . CMR
\(\frac{a^2}{b^2\left(c+2\right)}+\frac{b^2}{c^2\left(a+2\right)}+\frac{c^2}{a^2\left(b+2\right)}\ge1\)
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow xyz=1\)
Không khó để chứng minh \(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\ge x+y+z\)
\(VT=\Sigma\frac{y^2z}{x^2\left(1+2z\right)}=\Sigma\frac{\left(\frac{y^2}{x^2}\right)}{\frac{1+2z}{z}}\ge\frac{\left(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\right)^2}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+6}\)
\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+zx+6}\ge\frac{\left(x+y+z\right)^2}{\frac{\left(x+y+z\right)^2}{3}+6}\)
Đặt \(t=x+y+z\ge3\sqrt[3]{xyz}=3\).Cần chứng minh:
\(f\left(t\right)=\frac{t^2}{\frac{t^2}{3}+6}\ge1\Leftrightarrow\frac{2}{3}\left(t-3\right)\left(t+3\right)\ge0\)(đúng)
IS that true?
Làm xong em mới nhận ra không cần đổi biến:D
Ta có:
\(\frac{a}{b}+\frac{a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a^2}{bc}}=3\sqrt[3]{\frac{a^3}{abc}}=3a\)
Tương tự: \(\frac{b}{c}+\frac{b}{c}+\frac{c}{a}\ge3b;\frac{c}{a}+\frac{c}{a}+\frac{a}{b}\ge3c\)
Cộng theo vế 3 BĐT trên suy ra \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge a+b+c\)
Trở lại bài toán: \(VT=\Sigma_{cyc}\frac{\left(\frac{a^2}{b^2}\right)}{c+2}\ge\frac{\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2}{a+b+c+6}\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}=\frac{t^2}{t+6}\)(với \(t=a+b+c\ge3\sqrt[3]{abc}=3\))
Cần chúng minh: \(\frac{t^2}{t+6}\ge1\Leftrightarrow t^2-t-6\ge0\Leftrightarrow\left(t-3\right)\left(t+2\right)\ge0\)(đúng)