Tìm x :
X \(\times\left(789+567\right)=2016\times789\times567\times2016\)
Tính gía trị của biểu thức
\(\frac{\left(2015^2\times2025+31\times2016-1\right)\times\left(2015\times2020+4\right)}{2016^2\times2017\times2018\times2019\times2020}\)
Tinh \(\left(1-\frac{2}{2\times3}\right)\times\left(1-\frac{2}{3\times4}\right)\times\left(1-\frac{2}{4\times5}\right)\times...\times\left(1-\frac{2}{2015\times2016}\right)\)
Cho đẳng thức :\(x\times\left(x+1\right)\times\left(x+2\right)\times.............\times\left(x+2016\right)=2016\)(với x>0)
Chứng tỏ rằng \(x< \dfrac{1}{2015!}\)
Ta có \(x=\dfrac{2016}{x\times\left(x+1\right)\times\left(x+2\right)\times........\times\left(x+2016\right)}\)
\(\dfrac{1}{2015!}=\dfrac{2016}{2016!}=\dfrac{2016}{1\times2\times...........\times2016}\)
Vì x > 0=> \(\left(x+1\right)\times\left(x+2\right)\times...\times\left(x+2016\right)>1\times2\times...\times2016\)
\(\Rightarrow\dfrac{1}{\left(x+1\right)\times\left(x+2\right)\times.......\times\left(x+2016\right)}< \dfrac{1}{1\times2\times..........\times2016}\)\(\Rightarrow\dfrac{2016}{\left(x+1\right)\times\left(x+2\right)\times.......\times\left(x+2016\right)}< \dfrac{2016}{1\times2\times......\times2016}\)
\(\Leftrightarrow x< \dfrac{1}{2015!}\)(đpcm)
Ta có \(x=\dfrac{2016}{\left(x+1\right)\times\left(x+2\right)\times....\times\left(x+2016\right)}\)
\(\dfrac{1}{2015!}=\dfrac{2016}{2016!}=\dfrac{2016}{1\times2\times.....\times2016}\)
Vì x>0=>(x+1)×(x+2)×.............×(x+2016) >\(1\times2\times.....\times2016\)
\(\Rightarrow\dfrac{1}{\left(x+1\right)\times\left(x+2\right)\times......\times\left(x+2016\right)}>\dfrac{1}{1\times2\times......\times2016}\)
\(\Rightarrow\dfrac{2016}{\left(x+1\right)\times\left(x+2\right)\times......\times\left(x+2016\right)}>\dfrac{2016}{1\times2\times......\times2016}\)
\(\Leftrightarrow x< \dfrac{1}{2015!}\)(đpcm)
Tìm K sao cho: \(K-2016=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{2017\times1+2016\times2+2015\times3+...+2\times2016+2017\times1}\)
Ta có: 1+(1+2)+(1+2+3)+...+(1+2+3+...+2017)=2017x1+2016x2+2015x3+...+2x2016+1x2017
=> K-2016=\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{2017x1+2016x2+2015x3+...+2x2016+1x2017}\)=\(\frac{2017x1+2016x2+2015x3+...+2x2016+1x2017}{2017x1+2016x2+2015x3+...+2x2016+1x2017}=1\)
=> K=2016+1=2017
Toán tiếng anh hả bạn
Bài này thì bạn mình có thể giải được
Thank you
At the speed of light không trả lời mà cũng được k
Find K such that:
K - 2016 = \(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{2017\times1+2016\times2+2015\times3+...+2\times2016+1\times2017}\)
Tử số bằng mẫu số
K-2016=1
K=2017
Muốn biết tại sao tử= mẫu thì tích nha
\(K-2016=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{2017\times1+2016\times2+2015\times3+...+2\times2016+1\times2017}\)
\(K-2016=\frac{1\times2017+2\times2016+3\times2015+...+2017\times1}{2017\times1+2016\times2+2015\times3+...+2017\times1}\)
\(K-2016=1\)
\(\Rightarrow K=1+2016\)
\(\Rightarrow K=2017\)
Tìm min \(A=\left|x-2016\right|+\left|x-2017\right|\)
Nhận thấy: |x-2017| = |-x+2017|
Áp dụng BĐT: |a| + |b| \(\ge\) |a+b|
=> A = |x-2016| + |-x+2017| \(\ge\) |x-2016+-x+2017| = |1| = 1
Vậy MinA = 1 khi \(2016\le x\le2017\)
\(A=\left|x-2016\right|+\left|x-2017\right|\)
Ta có : \(\begin{cases}\left|x-2016\right|\ge0\\\left|x-2017\right|\ge0\end{cases}\)
\(\Rightarrow\left|x-2016\right|+\left|x-2017\right|\ge0\)
\(\Rightarrow A\ge0\)
Dấu " = " xảy ra khi và chỉ khi \(\begin{cases}x-2016=0\\x-2017=0\end{cases}\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}\)
Vậy \(Min_A=0\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}.}\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Đẳng thức xảy ra khi a,b cùng dấu.
Được \(A=\left|x-2016\right|+\left|2017-x\right|\ge\left|x-2016+2017-x\right|=1\)
Đẳng thức xảy ra khi \(\begin{cases}x-2016\ge0\\2017-x\ge0\end{cases}\)
\(\Leftrightarrow2016\le x\le2017\)
Vậy.......................................
Tìm giá trị nhỏ nhất của A= \(\left|x-2014\right|+\left|2015-x\right|+\left|x-2016\right|\)
Tìm x , cho n thuộc N
\(\left(\left|x-1\right|-2016\right)^{\left(n+2018\right)\left(n+2019\right)}=-\left(2^2-3^2\right)^{2017}\)
Cho x, y t/m:
\(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\)
Tìm Min \(M=5x^4+9y^4-12x^2+4y^2+5\)