Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khánhh Linhh
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
8 tháng 6 2021 lúc 15:00

Ta có: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\y=3x-2m+1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)

Mặt khác: \(x^2+y^2=2m^2+2m+1=2\left(m^2+m+\dfrac{1}{2}\right)\)

                 \(=2\left(m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

 Dấu bằng xảy ra \(\Leftrightarrow m+\dfrac{1}{2}=0\Leftrightarrow m=-\dfrac{1}{2}\)

  Vậy ...

 

Trần Quỳnh Trang
Xem chi tiết
Phạm Tuấn Đạt
8 tháng 7 2018 lúc 22:04

\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|+\left|x-5\right|\)

\(\Rightarrow A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|4-x\right|+\left|5-x\right|\)

\(\Rightarrow A\ge x-1+x-2+0+4-x+5-x\)

\(\Rightarrow A\ge6\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1\ge0;x-2\ge0\\x-3=0\\x-4\le0;x-5\le0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\Rightarrow x\in\left(2;3;4\right)\)

Vậy MinA = 6 \(\Leftrightarrow x\in\left(2,3,4\right)\)

Thành Vinh Lê
8 tháng 7 2018 lúc 22:08

Phạm Tuấn Đạt dùng lý thuyết nào vậy?

Trần Quỳnh Trang
8 tháng 7 2018 lúc 22:09

Hơi tắt quá, chi tiết 1 chút đc ko ?

Nguyen Thi Bich Huong
Xem chi tiết
Y
11 tháng 8 2019 lúc 8:44

\(T=x^2+2x\left(y-1\right)+\left(y-1\right)^2-\left(y-1\right)^2+y^2-2y-1\)

\(T=\left(x+y-1\right)^2-2\ge-2\forall x,y\)

Dấu "=" \(\Leftrightarrow\left(x+y-1\right)^2=0\Leftrightarrow x=1-y\)

Vậy Min T = -2 \(\Leftrightarrow x=1-y\)

Trần Ngọc Tú
Xem chi tiết
Lê Minh Anh
7 tháng 7 2017 lúc 20:37

a) Do: |6 - 2x| \(\ge\)0  nên A = |6 - 2x| - 5 \(\ge\)0 - 5 = -5

Dấu"=" xảy ra khi: |6 - 2x| = 0  => x = 3

Vậy GTNN của A là -5 khi x = 3

b) Ta có: |x + 1|\(\ge\)0 hay - |x + 1|\(\le\)0  nên B = 3 - |x + 1| \(\le\)3 - 0 = 3

Dấu "=" xảy ra khi: |x + 1| = 0   => x = -1

Vậy GTLN của B là 3 khi x = - 1 

Lê Minh Anh
7 tháng 7 2017 lúc 20:43

c) Ta có: (x + 1)2 \(\ge\)0 nên - (x + 1)2 \(\le\)0          (1)

|2 - y|\(\ge\)0 nên -|2 - y| \(\le\)0                               (2)

Từ (1) và (2)  => C = -(x + 1)2 - |2 - y| + 11 \(\le\)11

Dấu "=" xảy ra khi: (x + 1)2 = 0 và |2 - y| = 0    => x = -1 và y = 2

Vậy GTLN của C là 11 khi x = -1 và y = 2

d) Do: (x + 5)2 \(\ge\)0 và (2y - 6)2 \(\ge\)0

Nên: D = (x + 5)2 + (2y - 6)2 + 1 \(\ge\)1

Dấu "=" xảy ra khi: (x + 5)2 = 0 và (2y - 6)2 = 0   => x = -5 và y = 3

Vậy GTNN của D là 1 khi x = -5 và y = 3

buidatkhoi
Xem chi tiết
Trần Văn Thành
Xem chi tiết
Nguyễn Hà Anh
Xem chi tiết
Hoàng Thảo Linh
Xem chi tiết
Phùng Khánh Linh
7 tháng 5 2018 lúc 17:24

4. x + y = 1

⇒ x = y - 1

Thế : x = y - 1 vào bài toán , ta có :

G = 2( y - 1)2 + y2

G = 2y2 - 4y + 2 + y2

G = 3y2 - 4y + 2

G = 3( y2 - 2.\(\dfrac{2}{3}\) + \(\dfrac{4}{9}\)) + 2 - \(\dfrac{4}{3}\)

G = 3( y - \(\dfrac{2}{3}\))2 + \(\dfrac{2}{3}\)\(\dfrac{2}{3}\) ∀x

⇒ GMIN = \(\dfrac{2}{3}\) ⇔ y = \(\dfrac{2}{3}\) ; x = 1 - \(\dfrac{2}{3}\) = \(\dfrac{1}{3}\)

Còn lại làm TT nhen...

Nhã Doanh
7 tháng 5 2018 lúc 20:44

Ta có: x +y = 1

=> x = 1 - y

Thay vào ta được:

\(G=2\left(1-y\right)^2+y^2=2\left(1-2y+y^2\right)+y^2=2-4y+2y^2+y^2=2-4y+3y^2\)

\(=3y^2-4y+2=3\left(y^2-\dfrac{4}{3}y+\dfrac{2}{3}\right)=3\left(y^2-2.y.\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{2}{9}\right)=3\left(y-\dfrac{2}{3}\right)^2+\dfrac{2}{3}\ge\dfrac{2}{3}\)

=> MinA = \(\dfrac{2}{3}\) khi y = \(\dfrac{2}{3}\)\(x=\dfrac{1}{3}\)

Nhã Doanh
7 tháng 5 2018 lúc 20:52

Ta có: 2x + y = 1

=> y = 1 - 2x

Thay vào ta được:

\(I=4x^2+2\left(1-2x\right)^2=4x^2+2\left(1-4x+4x^2\right)=4x^2+2-8x+8x^2=12x^2-8x+2\)

\(I=12\left(x^2-\dfrac{2}{3}x+\dfrac{1}{6}\right)=12\left(x^2-2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{18}\right)=12\left(x-\dfrac{1}{3}\right)^2-\dfrac{2}{3}\ge\dfrac{2}{3}\)

Vậy MinI = \(\dfrac{2}{3}\) khi \(x=\dfrac{1}{3}\)\(y=\dfrac{1}{3}\)

Lê Quang Dũng
Xem chi tiết
Nhã Doanh
29 tháng 7 2018 lúc 22:10

a. \(x+2y=1\Rightarrow x=1-2y\). Thay vào ta được:

\(A=\left(1-2y\right)^2+2y^2=1-4y+4y^2+2y^2=6y^2-4y+1=6\left(y^2-\dfrac{2}{3}y+\dfrac{1}{3}\right)=6\left(y^2-2.y.\dfrac{1}{3}+\dfrac{1}{9}\right)+\dfrac{4}{3}=\left(y-\dfrac{1}{3}\right)^2+\dfrac{4}{3}\ge\dfrac{4}{3}\)\(\Rightarrow Min_A=\dfrac{4}{3}\Leftrightarrow x=y=\dfrac{1}{3}\)

b. \(4x-3y=7\Rightarrow x=\dfrac{7+3y}{4}\) Thay vào ta được:

\(2.\left(\dfrac{7+3y}{4}\right)^2+5.y^2=2.\left(\dfrac{49+42y+9y^2}{16}\right)+5y^2=\dfrac{98+84y+18y^2+80y^2}{16}=\dfrac{98y^2+84y+98}{16}=\dfrac{98\left(y^2+\dfrac{6}{7}y+\dfrac{9}{49}\right)+80}{16}=\dfrac{98\left(y+\dfrac{3}{7}\right)^2+80}{16}\ge5\)\(\Rightarrow Min_B=5\Leftrightarrow x=\dfrac{10}{7};y=-\dfrac{3}{7}\)

c. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a^3 + b^3. - Bất đẳng thức và cực trị - Diễn đàn Toán học