cmr trong 27 số nguyên dương bất kì tìm được hai số có tổng hoặc hiệu chia hết cho 50
Chứng minh trong 52 số nguyên dương bất kì luôn tìm được hai số sao cho tổng hoặc hiệu của hai số đó chia hết cho 100
Nếu có 2 số có cùng số dư khi chia hết cho 100 thì bài toán được giải.Giả sử không có hai số nào cùng số dư khi chia cho 100.Khi đó,có ít nhất 51 số khi chia hết cho 100 có số dư khác 50 là \(a_1,a_2,...,a_{50}\)
Đặt \(b_i=-a_i\left(1\le i\le51\right)\)
Xét 102 số : \(a_i\)và \(b_i\)
Theo nguyên tắc của Dirichlet thì tồn tại \(i\ne j\)sao cho \(a_i\equiv b_j\left(mod100\right)\)
=> \(a_i+a_j⋮100\)
Chứng minh rằng trong 52 số nguyên dương bất kì ta luôn tìm được hai số có tổng hoặc hiệu của chúng chia hết cho 100
Ai làm được mk tick nhé
Nếu trong \(52\)số đã cho có hai số có cùng số dư khi chia cho \(100\)ta chỉ cần chọn hai số đó, có hiệu chia hết cho \(100\).
Nếu trong \(52\)số đã cho không có hai số nào có cùng số dư khi chia cho \(100\).
Xét các bộ \(0,\left(1,99\right),\left(2,98\right),...,\left(a,100-a\right),...,\left(49,51\right)\)(các số dư của các số khi chia cho \(100\))
Có \(51\)bộ mà có \(52\)số nên theo nguyên lí Dirichlet có ít nhất hai số thuộc một bộ.
Xét hai số thuộc bộ đó, dễ thấy tổng của chúng chia hết cho \(100\).
Ta có đpcm.
anh Đoàn Đức Hà ơi chỉ có 50 bộ thôi mà anh sao lại 51 bộ ạ
CMR:trong ba số nguyên tố lớn hơn 3 bất kì,luôn tìm được hai số có tổng hoặc hiệu chia hết cho 12
Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12
nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11
) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
cho 52 số tự nhiên bất kì .CMR trong 52 số này luôn tìm được 1 hay 1 số số có tổng hoặc hiệu chia hết cho 1000
Chứng minh rằng trong 10 số tự nhiên bất kì luôn tồn tại hai số có tổng hoặc hiệu chia hết cho 17
Chứng minh rằng trong 10 số tự nhiên bất kì luôn tồn tại hai số có tổng hoặc hiệu chia hết cho 17
Chứng minh trong 27 số tự nhiên bất kì luôn tồn tại 2 số sao cho tổng hoặc hiệu của chúng chia hết cho 50
trong 52 số tự nhiên bất kì bao giờ ta cũng có thể tìm được hai số có tổng hoặc hiệu chia hết cho 100?
chứng minh rằng trong 52 số tự nhiên bất kì bao giờ cũng có thể tìm được hai số có tổng hoặc hiệu chia hết cho 100
Bài toán 1. Chứng mình rằng:
a) Trong 2012 số tự nhiên bất kì luôn tìm được hai số chia cho 2011 có cùng số dư
(hay hiệu của chúng chia hết cho 2011).
b) Trong 2012 sô tự nhiên bất kì luôn tìm được một số chia hết cho 2012 hoặc luôn
tìm được hai số chia cho 2012 có cùng số dư.
Giúp mk vs, mk đang caand gấp