Câu I Tìm giá trị lớn nhất, nhỏ nhất của
P=\(\dfrac{39n+20}{3n+1}\) với n thuộc Z
Cho phân số 3n+1 /n+2 với n thuộc z tìm n để phân số đạt giá trị lớn nhất và nhỏ nhất
A= 3n-1/n-2
1.Tìm n thuộc Z để A thuộc Z
2.Tìm n thuộc Z để A đạt giá trị nhỏ nhất
3. Tìm n thuộc Z để A đạt giá trị lớn nhất
a, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A thuộc Z <=> n - 2 thuộc Ư(5) = {1;-1;5;-5}
Ta có: n - 2 = 1 => n = 3
n - 2 = -1 => n = 1
n - 2 = 5 => n = 7
n - 2 = -5 => n = -3
Vậy n = {3;1;7;-3}
b, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A đạt giá trị nhỏ nhất <=> \(\frac{5}{n-2}\) đạt giá trị nhỏ nhất
=> n - 2 đạt giá trị lớn nhất (n - 2 \(\ne\)0 ; n - 2 < 0)
=> n - 2 = -1 => n = 1
Vậy để A có giá trị nhỏ nhất thì n = 1
c, \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A đạt giá trị lớn nhất <=> \(\frac{5}{n-2}\)đạt giá trị lớn nhất
=> n - 2 đạt giá trị nhỏ nhất (n - 2 \(\ne\)0 ; n - 2 > 0)
=> n - 2 = 1 => n = 3
Vậy để A đạt giá trị lớn nhất thì n = 3
với n thuộc Z tìm giá trị lớn nhất, giá trị nhỏ nhất của:
M= \(\frac{3n+2}{2n-6}\)
N= \(\frac{n+2}{3n+5}\)
tìm n thuộc z để A=\(\frac{3n+2}{2n-1}\)có giá trị lớn nhất. tìm giá trị lớn nhất của A
kiểm tra đề đi bạn
rồi có chi tớ giải cho
Tìm \(n\) ϵ \(Z\) để \(\dfrac{6n-1}{3n-2}\) có giá trị nhỏ nhất?
\(A=\dfrac{6n-1}{3n-2}\)
\(\Rightarrow A=\dfrac{6n-4+3}{3n-2}\)
\(\Rightarrow A=\dfrac{2\left(3n-2\right)+3}{3n-2}\)
\(\Rightarrow A=2+\dfrac{3}{3n-2}\ge2+\dfrac{3}{3.1-2}=5\left(n=1\in Z\right)\)
\(\Rightarrow Min\left(A\right)=5\left(n=1\right)\)
C =6n+ 39/3n+2
a, tìm n thuộc Z để C là số nhguyên
b, tìm n thuộc Z để C có giá trị lớn nhất
c, tìm n thuộc Z dể C có giá trị nhỏ nhất
d tìm n thuộc Z dể C có giá trị tối giản
giúp mình nhé , mong các bạn giúp minh fnhanh nhất có thể ( help me !)
A=\(\frac{6n-1}{3n+2}\)
Tìm n thuộc Z để A có giá trị nhỏ nhất . Tìm giá trị nhỏ nhất
A=\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}\)=\(\frac{6n+4}{3n+2}-\frac{5}{3n+2}\)= 2-\(\frac{5}{3n+2}\)
Để A đạt GTNN thì \(\frac{5}{3n+2}\)đạt GTLN \(\Leftrightarrow\)3n+2 <0 và đạt GTLN
=>3n+2 =-1 => 3n=-3=>n=-1khi đó A= 7
Vậy Amin=7 khi x=-1
Ta có :
\(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)
Để \(A\) đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN suy ra \(3n+2>0\) và đạt GTNN
\(\Rightarrow\)\(3n+2=1\)
\(\Leftrightarrow\)\(3n=-1\)
\(\Leftrightarrow\)\(n=\frac{-1}{3}\)
\(\Rightarrow\)\(A=\frac{6n-1}{3n+2}=\frac{\frac{6.\left(-1\right)}{3}-1}{\frac{3.\left(-1\right)}{3}+2}=\frac{-2-1}{-1+2}=\frac{-3}{1}=-3\)
Vậy \(A_{min}=-3\) khi \(x=\frac{-1}{3}\)
Cho A =6n-1/3n+2
a;Tìm n thuộc Z để A thuộc Z.
b; n thuộc Z.Tìm giá trị nhỏ nhất của A
Lời giải:
a. Với $n$ nguyên, để $A$ nguyên thì $6n-1\vdots 3n+2$
$\Rightarrow 2(3n+2)-5\vdots 3n+2$
$\Rightarrow 5\vdots 3n+2$
$\Rightarrow 3n+2\in \left\{\pm 1; \pm 5\right\}$
$\Rightarrow n\in \left\{-\frac{1}{3}; -1; 1; \frac{-7}{3}\right\}$
Do $n$ nguyên nên $n\in\left\{-1;1\right\}$
b.
\(A=\frac{2(3n+2)-5}{3n+2}=2-\frac{5}{3n+2}\)
Để $A$ min thì $\frac{5}{3n+2}$ max
$\Rightarrow 3n+2$ phải là số nguyên dương bé nhất.
$3n+2>0\Rightarrow n> \frac{-2}{3}=-0,6666$
$\Rightarrow n$ nhỏ nhất là $0$
$\Rightarrow 3n+2$ nhỏ nhất bằng 2.
Khi đó: $A_{\min}=2-\frac{5}{3.0+2}=\frac{-1}{2}$
Cho phân số M = 6n - 1 / 3n+2 (n thuộc Z)
a, tìm số nguyên n để M có giá trị nguyên
b, tìm số nguyên n để M có giÁ TRỊ NHỎ NHẤT . tìm giá trị nhỏ nhất đó
mk giải câu a thui nha
để \(\frac{6n-1}{3n+2}\)là số nguyên thì:
(6n-1) sẽ phải chia hết cho(3n+2)
mà (3n+2) chja hết cho (3n+2)
=> 2(3n+2) cx sẽ chia hết cho (3n+2)
<=> (6n+4) chia hết cho (3n+2)
mà (6n-1) chia hết cho (3n+2)
=> [(6n+4)-(6n-1)] chja hết cho (3n+2)
(6n+4-6n+1) chja hết cho 3n+2
5 chia hết cho3n+2
=> 3n+2 \(\in\){1,5,-1,-5}
ta có bảng
3n+2 | 1 | 5 | -1 | -5 |
3n | 3 | 7 | 1 | -3 |
n | 1 | -1 |
vậy....
bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!