tìm stn N cho biết 2n + 7 chia hết cho n+1
Tìm STN n để :
2n + 7 chia hết cho 2n + 1
Tìm STN m để :
3m - 9 chia hết cho 3m - 1
a) \(2n+7⋮2n+1\)
\(\Rightarrow\left(2n+1\right)+6⋮2n+1\)
\(\Rightarrow6⋮2n+1\)(vì \(2n+1⋮2n+1\))
\(\Rightarrow2n+1\inƯ\left(6\right)\)
\(\Rightarrow2n+1\in\left\{1;2;3;6\right\}\)
\(\Rightarrow\)\(2n\in\left\{0;1;2;5\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
b) \(3m-9⋮3m-1\)
\(\Rightarrow\left(3m-1\right)-8⋮3m-1\)
\(\Rightarrow8⋮3m-1\)(vì \(3m-1⋮3m-1\))
\(\Rightarrow3m-1\inƯ\left(8\right)\)
\(\Rightarrow3m-1\in\left\{1;2;4;8\right\}\)
\(\Rightarrow3m\in\left\{2;3;5;9\right\}\)
\(\Rightarrow m\in\left\{1;3\right\}\)
Hok "tuốt" nha^^
Tìm stn n sao cho :
a, (a^4-2n^3+2n^2-2n+1) chi hết cho (n^4-1)
b, (n^3-n^2+2n+7) chia hết cho (n^2+1)
Tìm STN n sao cho:
a) (4n - 7) chia hết cho (n - 1)
b) (5n - 8) chia hết cho (4 - n)
c) (10 - 2n) chia hết cho (n - 2)
d) (n^2 + 3n + 6) chia hết cho (n + 3)
a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)
\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)
c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)
tìm stn n để
a) 4n-7 chia hết cho n-1
b) 10-2n chia hết cho n-2
a, 4n - 7 ⋮ n - 1
=> 4n - 4 - 3 ⋮ n - 1
=> 4(n - 1) - 3 ⋮ n - 1
=> -3 ⋮ n - 1
=> n - 1 thuộc Ư(-3)
=> n - 1 thuộc {-1; 1; -3; 3}
=> n thuộc {0; 2; -2; 4}
Tìm STN n, sao cho:
a,5n+7 chia hết cho n
b,n+9 chia hết cho n+4
c,2n+1 chia hết cho n-3
a) Vì 5n + 7 chia hết cho n
\(\Rightarrow7⋮n\Rightarrow n\inƯ\left(7\right)\Rightarrow n\in\left\{\pm1;\pm7\right\}\)
Vậy \(n\in\left\{\pm1;\pm7\right\}\)
b) Vì n + 9 chia hết cho n +4
\(\Rightarrow\left(n+4\right)+5⋮n+4\)
\(\Rightarrow5⋮n+4\)
\(\Rightarrow n+4\inƯ\left(5\right)\)
\(\Rightarrow n+4\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{-3;-5;-1;-9\right\}\) \(\inℕ\)
Vậy \(n\in\left\{-3;-5;-1;-9\right\}\)
c, Vì 2n + 1 chia hết cho n - 3
\(\Rightarrow\left(2n-6+7\right)⋮\left(n-3\right)\)
\(\Rightarrow2\left(n-3\right)+7⋮n-3\)
\(2\left(n-3\right)⋮n-3\Rightarrow7⋮n-3\)
Phần còn lại lm như trên
Tìm stn n sao cho 2n+7 chia hết cho n+2
Mk ra là 1.Thử hoài nhưng chỉ có 1 laf chia hết thôi à. Học giỏi nha, bạn Như
Tìm STN n biết :
a, 3+ 2n chia hết cho n
b, 3n+2 chia hết cho n- 1
c, 3n+2chia hết cho 2n+3
giúp với nha!
Tìm stn n , biết
2n +4 chia hết cho n -1
TA CÓ :
.........................................................................................
vậy 4 là B(n-1)
=> n = { 1 ; 2 ; 4 }
Vì n - 1 \(⋮\)n - 1
=> 2n-2 \(⋮\)n-1
Vì 2n + 4 \(⋮\)n-1
=>[( 2n + 1) + ( 2n-2) ] \(⋮\)n-1
=> [ 2n +1 +-2n-2] \(⋮\)n-1
=> 3 \(⋮\)n-1
=> n-1 \(\in\)Ư(3) = { 1:3}
=> n\(\in\){0;2}
Vậy ............
\(2n+4=2\left(n-1\right)+6⋮\left(n-1\right)\Leftrightarrow6⋮\left(n-1\right)\)
Do đó \(\left(n-1\right)\inƯ\left(6\right)=\left(1;2;3;6;-1;-2;-3;-6\right)\)
Ta có bảng:
n-1 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -5 | -2 | -1 | 0 | 2 | 3 | 4 | 7 |
Do n là số tự nhiên nên \(n\in\left\{0;2;3;4;7\right\}\)
a,Tìm n là STN sao cho n+1 là ước của 2n+7
b,Cho 5a+3b chia hết cho 7(a,b thuộc N).Chứng minh rằng 3a-b chia hết cho 7
a) Để n + 1 là ước của 2n + 7 thì :
2n + 7 ⋮ n + 1
2n + 2 + 5 ⋮ n + 1
2( n + 1 ) + 5 ⋮ n + 1
Vì 2( n +1 ) ⋮ n + 1
=> 5 ⋮ n + 1
=> n + 1 thuộc Ư(5) = { 1; 5; -1; -5 }
=> n thuộc { 0; 4; -2; -6 }
Vậy........
\(\text{n + 1 là ước của 2n + 7 nên }\left(2n+7\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(2n+2+5\right)⋮\left(n+1\right)\)
\(\Rightarrow5⋮\left(n+1\right)\left[\text{vì }\left(2n+2\right)⋮\left(n+1\right)\right]\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\text{Trường hợp : }n+1=1\)
\(\Rightarrow n=1-1\)
\(\Rightarrow n=0\)
\(\text{Trường hợp : }n+1=5\)
\(\Rightarrow n=5-1\)
\(\Rightarrow n=4\)
\(\text{Vậy }n\in\left\{0;4\right\}\)
Tìm STN n để:(n^2+2n+7) chia hết cho (n+2)