a)x^2-8x+16-y^2
b)4x^2-y^2+10y-25
c)x^2-y^2+z^2-t^2-2xz+2yt
x2 - x - 6
x2 - 8x + 16 - y2
4x2 - y2 + 10y - 25
9x2 - y2 + 10yz - 25z2
x2 - y2 - z2 - t2 - 2xz + 2yt
xy(x+y) + yz(y+z) + xz(x+z) + 2xyz
tìm gtnn
d. D(x) = 2x² + 3y² + 4xy-8x-2y + 18 e. E(x) = 2x² + 3y² + 4z²-2(x+y+z) + 2 f F(x)=2x² +8xy + 11y2-4x-2y+6 g. G(x)=2x²+2y+z²+2xy-2xz-2yz-2x-4y h. H(x)=x² + y²-xy-x+y+1 Bài 2: Tim GTLN của các biểu thức sau a. A=4x²-5y² +8xy+10y+12
b.B=-x²-y²+xy+2x+2y
tìm gtnn
d. D(x) = 2x² + 3y² + 4xy-8x-2y + 18 e. E(x) = 2x² + 3y² + 4z²-2(x+y+z) + 2 f F(x)=2x² +8xy + 11y2-4x-2y+6 g. G(x)=2x²+2y+z²+2xy-2xz-2yz-2x-4y h. H(x)=x² + y²-xy-x+y+1 Bài 2: Tim GTLN của các biểu thức sau a. A=4x²-5y² +8xy+10y+12
b.B=-x²-y²+xy+2x+2y
tìm gtnn
d. D(x) = 2x² + 3y² + 4xy-8x-2y + 18 e. E(x) = 2x² + 3y² + 4z²-2(x+y+z) + 2 f F(x)=2x² +8xy + 11y2-4x-2y+6 g. G(x)=2x²+2y+z²+2xy-2xz-2yz-2x-4y h. H(x)=x² + y²-xy-x+y+1 Bài 2: Tim GTLN của các biểu thức sau a. A=4x²-5y² +8xy+10y+12
b.B=-x²-y²+xy+2x+2y
Ta có:
D=2x2+3y2+4xy−8x−2y+18C=2x2+3y2+4xy−8x−2y+18
D=2(x2+2xy+y2)+y2−8x−2y+18C=2(x2+2xy+y2)+y2−8x−2y+18
D=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1C=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1
D=2(x+y−2)2+(y+3)2+1≥1C=2(x+y−2)2+(y+3)2+1≥1
Dấu "=" xảy ra ⇔x+y=2⇔x+y=2và y=−3y=−3
Hay x = 5 , y = -3
Đc chx bạn
Rút gọn phân thức: \(\frac{\text{x^2+y^2-z^2-2zt+2xy-t^2}}{x^2-y^2+z^2-2yt+2xz-t^2}\)
Rút gọn phân thức: E= \(\frac{x^2+y^2-z^2-2zt+2xy-t^2}{x^2-y^2+z^2-2yt+2xz-t^2}\)
tìm gtln gtnn của biểu thức M=x+y+z+t biết x,y,z,t thoả mãn: (11-3y^2-3t^2-2xz-2yt)/(x^2+xt+t^2+1)
PHÂN TÍCH ĐA THỨC NHÂN TỬ
a)x^2+8x+20
b)x^2+y^2+z^2+2xy+2yz+2xz+14
c)a^4+a^2b^2+b^4
d)x^2-4x+y^2-2y-7
Phân tích đa thức thành nhân tử:1)35x(y-3)-14y(8-y) 2)4x^2-y^2+10-25. 3)9x^2-y^2+10yz-25z^2, 4)x^2-y^2+z^2-t^2-2xz+2yt 5)(x-y+4)^2-(2x+3y-1)^2