Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Vương Đức Hà
28 tháng 7 2020 lúc 15:42

ủa đây là toám lớp 1 hả anh

Khách vãng lai đã xóa
Phan Nghĩa
28 tháng 7 2020 lúc 15:45

cauchy phần mẫu @@

Khách vãng lai đã xóa
WTFシSnow
28 tháng 7 2020 lúc 15:49

Forever_Alone tên là Anh nhưng ko bt họ

Khách vãng lai đã xóa
Ngô Gia Bảo
Xem chi tiết
dia fic
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 2021 lúc 10:51

\(T=\dfrac{\left(xy\right)^2}{zx+zy}+\dfrac{\left(yz\right)^2}{xy+xz}+\dfrac{\left(zx\right)^2}{yx+yz}\ge\dfrac{xy+yz+zx}{2}\ge\dfrac{3}{2}\sqrt[3]{\left(xyz\right)^2}=\dfrac{3}{2}\)

 

l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Phạm Thành Đông
2 tháng 4 2021 lúc 22:53

Đặt \(A=\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)

Ta có:

\(x^2+xy+yz+zx=x+xyz=x\left(x+yz\right)\)

\(\Rightarrow\frac{x\left(x+yz\right)}{x}=\frac{x^2+xy+yz+zx}{x}\)

\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+zx}{x}=\frac{\left(x^2+xy\right)+\left(yz+zx\right)}{x}=\frac{\left(x+z\right)\left(x+y\right)}{x}\)

\(\Rightarrow\sqrt{x+yz}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\)

Vì x, y, z >0 nên áp dụng bất đẳng thức Bunhiacopxki cho 2 số dương, ta được:

\(\left(x+y\right)\left(x+z\right)\ge\left(\sqrt{x^2}.+\sqrt{yz}\right)^2\)

\(\Rightarrow\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)

\(\Rightarrow\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}\)

Do đó \(\sqrt{x+yz}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}\left(1\right)\)

Chứng minh tương tự, ta được:

\(\sqrt{y+xz}\ge\frac{y+\sqrt{xz}}{\sqrt{y}}\left(2\right)\)

Chứng minh tương tự, ta được:

\(\sqrt{z+xy}\ge\frac{z+\sqrt{xy}}{\sqrt{z}}\left(3\right)\)

Từ (1), (2) và (3), ta được:

\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)\(\ge\frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{zx}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}\)

\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{\frac{yz}{x}}+\sqrt{y}+\sqrt{\frac{xz}{y}}+\sqrt{z}+\sqrt{\frac{xy}{z}}\)

\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{yz+zx+xy}{\sqrt{xyz}}\)

 \(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}\)(vì \(xy+yz+zx=xyz\))

\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\)(điều phải chứng minh).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\xy+yz+zx=xyz\end{cases}}\Leftrightarrow x=y=z=3\)

Vậy với x, y, z là các số thực dương thỏa mãn xy + yz + zx =xyz thì:

\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\).

\(\)

Khách vãng lai đã xóa
Pham van Thuy
Xem chi tiết
Dương Thu Ngọc
Xem chi tiết
Dieren
Xem chi tiết
Nhan Thanh
Xem chi tiết
Trên con đường thành côn...
17 tháng 7 2021 lúc 15:14

undefined

dekhisuki
Xem chi tiết