Tìm x , biết :
( x - 2 ) : 37 = ( 1008 + 1 ) x \(\frac{2}{37}\)
1, (\(x\)+1)+(\(x\)+4)+(\(x\)+7)+...+(\(x\)+28)=155
2, (\(x\)-2):37=(1008+1) x \(\frac{2}{37}\)
(x + 1) + (x + 4) + (x + 7) + ... + (x + 28) = 155
=> (x + x + x + ... + x) + (1 + 4 + 7 + ... + 28) = 155
=> 10x + 145 = 155
=> 10x = 10
=> x = 1
vậy_
Tìm x biết : \(1\frac{2}{5}+\left(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\right)\times x=\frac{16}{5}\)
\(\frac{7}{5}+\left(\frac{2\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}\right)\cdot x=\frac{16}{5}\)
\(\frac{2}{5}x=\frac{16}{5}-\frac{7}{5}\)
\(\frac{2}{5}x=\frac{9}{5}\)
x = \(\frac{9}{5}:\frac{2}{5}\)
x = 9/2
\(1\frac{2}{5}+\left(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\right).x=\frac{16}{5}\)
\(\frac{7}{5}+\left[\frac{2.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}{5.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}\right].x=\frac{16}{5}\)
\(\frac{7}{5}+\frac{2}{5}.x=\frac{16}{5}\)
\(\frac{2}{5}.x=\frac{16}{5}-\frac{7}{5}\)
\(\frac{2}{5}.x=\frac{9}{5}\)
\(x=\frac{9}{5}:\frac{2}{5}\)
\(x=\frac{9}{5}.\frac{5}{2}\)
\(x=\frac{9}{2}\)
\(\frac{7}{5}+\left(\frac{2\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}\right).x=\frac{16}{5}\)
\(\frac{2}{5}x=\frac{16}{5}-\frac{7}{5}\)
\(\frac{2}{5}x=\frac{9}{5}\)
\(x=\frac{9}{5}\div\frac{2}{5}\)
\(x=\frac{9}{2}\)
Tìm x, biết:
\(1\frac{3}{5}+\left(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\right).x=\frac{16}{5}\)
\(1\frac{3}{5}+\left(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\right)x=\frac{16}{5}\)
\(\Rightarrow\frac{2\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}.x=\frac{16}{5}-\frac{8}{5}\)
\(\Rightarrow\frac{2}{5}.x=\frac{8}{5}\)
\(\Rightarrow x=\frac{8}{5}:\frac{2}{5}=4\)
vậy x=4
Tìm x biết \(\frac{8}{5}+\left(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\right).x=\frac{16}{5}\)
=.8/5+((2*17*37+2*7*37+2*7*17)/(7*17*37))/((5*17*37+5*7*37+5*7*17)/(7*17*37))*x=16/5
=>8/5+((2*17*37+2*7*37+2*7*17)/(7*17*37))*((7*17*37)/(5*17*37+5*7*37+5*7*17))*x=16/5
=>8/5+(2(17*37+7*37+7*17))/(5(17*37+7*37+7*17))*x=16/5
=>8/5+(2/5)*x=16/5
=>(2/5)*x=16/5-8/5
=>(2/5)*x=8/5
=>x=(8/5)/(2/5)
=>x=4
Vậy x=4
8/5 + [(2/7 + 2/17 + 2/37)/(5/7 + 5/17 + 5/37)].x = 16/5
=> 8/5 + [(2/7 : 5/7) + (2/17 : 5/17) + (2/37 + 5/37)].x = 16/5
=> 8/5 + (2/5 + 2/5 + 2/5).x = 16/5
=> 8/5 + (2/5 . 3).x = 16/5
=> 8/5 + 1/1/5 .x = 16/5
=> 6/5 .x = 16/5 - 8/5
=> 6/5 .x = 1/3/5
=> x = 1/3/5 : 6/5
=> x = 1/1/3
Có gì sai xin m.n giúp đỡ ^^
tìm x
a, x+(-7)=-20
b, 8-x=-12
c, /x/-7=-6
g, 5./x+9/=40
d, 5^2.2^2-7./x/=65
e,37-3/x/=(2^3-4)
f, /x/+/-5/=/-37/
h,\(\frac{-5}{6}+\frac{8}{3}+\frac{-29}{6}\frac{< }{_{ }-_{ }}x\frac{< }{-}\frac{-1}{2}+2+\frac{5}{2}\)
a) \(x+\left(-7\right)=-20\)
\(\Rightarrow x=-20+7\)
\(\Rightarrow x=-13\)
Vậy \(x=-13\)
b) \(8-x=-12\)
\(\Rightarrow x=8-\left(-12\right)\)
\(\Rightarrow x=20\)
Vậy \(x=20\)
c) \(|x|-7=-6\)
\(\Rightarrow|x|=-6+7\)
\(\Rightarrow|x|=1\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy \(x\in\left\{1;-1\right\}\)
d) \(5^2.2^2-7.|x|=65\)
\(\Rightarrow\left(5.2\right)^2-7.|x|=65\)
\(\Rightarrow10^2-7.|x|=65\)
\(\Rightarrow100-7.|x|=65\)
\(\Rightarrow7.|x|=35\)
\(\Rightarrow|x|=5\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
Vậy \(x\in\left\{5;-5\right\}\)
e) \(37-3.|x|=2^3-4\)
\(\Rightarrow37-3.|x|=8-4\)
\(\Rightarrow37-3.|x|=4\)
\(\Rightarrow3.|x|=33\)
\(\Rightarrow|x|=11\)
\(\Rightarrow\orbr{\begin{cases}x=11\\x=-11\end{cases}}\)
Vậy \(x\in\left\{11;-11\right\}\)
f) \(|x|+|-5|=|-37|\)
\(\Rightarrow|x|+5=37\)
\(\Rightarrow|x|=32\)
\(\Rightarrow\orbr{\begin{cases}x=32\\x=-32\end{cases}}\)
Vậy \(x\in\left\{32;-32\right\}\)
g)\(5.|x+9|=40\)
\(\Rightarrow|x+9|=8\)
\(\Rightarrow\orbr{\begin{cases}x+9=8\\x+9=-8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=-17\end{cases}}\)
Vậy \(x\in\left\{-1;-17\right\}\)
h) \(-\frac{5}{6}+\frac{8}{3}+\frac{-29}{6}\le x\le\frac{-1}{2}+2+\frac{5}{2}\)
\(\Rightarrow\frac{-5}{6}+\frac{16}{6}+\frac{-29}{6}\le x\le\frac{-1}{2}+\frac{4}{2}+\frac{5}{2}\)
\(\Rightarrow-3\le x\le4\)
Vậy \(-3\le x\le4\)
câu a
x+(-7)=-20
x=-20-(-7)
x=-13
bài 1 tính bằng cách hợp lí nếu có thể
\(\frac{-5}{12}\)-\(\frac{-3}{24}\)=
b) 5\(\frac{5}{13}\)-(1\(\frac{1}{2}+3\frac{5}{13}\))
c)\(\frac{-13}{37}.\frac{5}{23}+\frac{-13}{37}.\frac{18}{23}+\frac{50}{37}\)
d)(0,5 -\(\frac{3}{2}\)):1\(\frac{1}{6}+75\%\)
bài 2 tìm x biết
-7/5 +x = -3/4
-7/4 + 1/4 : x = 3/2
Tìm x
a)\(\left(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\right).120+x:\frac{1}{3}=-4\)
b)\(1\frac{3}{5}+\left(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\right).x=\frac{16}{5}\)
a)\(\left(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\right).120+x:\frac{1}{3}=-4\)
\(\Rightarrow\left(\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\right).120+x:\frac{1}{3}=-4\)
\(\Rightarrow\left(\frac{1}{24}-\frac{1}{30}\right).120+x:\frac{1}{3}=-4\)
\(\Rightarrow\frac{1}{120}.120+x:\frac{1}{3}=-4\)
\(\Rightarrow1+x:\frac{1}{3}=-4\)
\(\Rightarrow x:\frac{1}{3}=-4-1=-5\)
\(\Rightarrow x=-5.\frac{1}{3}=\frac{-5}{3}\)
b)\(1\frac{3}{5}+\left(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\right).x=\frac{16}{5}\)
\(\Rightarrow\frac{8}{5}+\left[\frac{2.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}{5.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}\right].x=\frac{16}{5}\)
\(\Rightarrow\frac{8}{5}+\frac{2}{5}.x=\frac{16}{5}\)
\(\Rightarrow\frac{2}{5}.x=\frac{16}{5}-\frac{8}{5}=\frac{8}{5}\)
\(\Rightarrow x=\frac{8}{5}:\frac{2}{5}=\frac{8}{5}.\frac{5}{2}=\frac{8}{2}=4\)
\(\Rightarrow x=4\)
Tìm x biết : |x^2-3x|+|(x+1).(x-3)|=0
Vì |x^2-3x|>=0
|(x+1).(x-3)|>=0
Mà |x^2-3x|+|(x+1).(x-3)|=0\(\Rightarrow\)
cả 2 vế đều bằng 0 rồi tìm x thế thôi
tìm x, biết: \(\frac{x-1}{5}+\frac{x-1}{7}+\frac{x-1}{9}+....+\frac{x-1}{35}+\frac{x-1}{37}=0\)
\(\frac{x-1}{5}+\frac{x-1}{7}+...+\frac{x-1}{37}=0=>\left(x-1\right).\left(\frac{1}{5}+\frac{1}{7}+...+\frac{1}{37}\right)=0\)
mà \(\frac{1}{5}+\frac{1}{7}+...+\frac{1}{37}>0\)
=> x-1 = 0
=> x = 1
Vậy x=1
đúng nha