tim số tự nhiên n để:
\(n^6+2n^4-2n^3+4\) là số chính phương
Tìm các số tự nhiên n để A = n^6 - 2n^5 + 2n^4 - 2n^3 + n^2 là số chính phương.
Các bạn ơi giúp mik với
`A = n^2(n^4 - 2n^3 + 2n^2 - 2n + 1)`
Để `A` chính phương thì `n^4 - 2n^3 + 2n^2 - 2n + 1 = a^2 (a in NN)`.
`<=> n^4 -2n^3 + n^2 + n^2- 2n +1 = a^2`
`<=> (n^2+1)(n-1)^2 = a^2`.
Vì `(n-1)^2` chính phương, `a^2` chính phương.
`=> n^2+1` chính phương.
Đặt `n^2+1 = b^2(b in NN)`.
`=> (b-n)(b+n) =1`
Mà `b, n in NN`.
`=> {(b-n=1), (b+n=1):}`
`<=> {(b=1), (n=0):}`
Vậy `n = 0`.
Tìm số tự nhiên thỏa mãn: A=\(n^6+2n^4-2n^3+4\) là số chính phương
Hãy tích cho tui đi
vì câu này dễ mặc dù tui ko biết làm
Yên tâm khi bạn tích cho tui
Tui sẽ ko tích lại bạn đâu
THANKS
chứng minh rằng số có dạng n^6-n^4+2n^3+2n^2 trong đó n là số tự nhiên và n>1 không phải là số chính phương
Tìm số tự nhiên n để biểu thức là số chính phương:
n4 + 2n3 + 2n2 + 2n + 7
Tìm số tự nhiên n sao cho \(A=n^6-n^4+2n^3+2n^2\) là một số chính phương
\(a=n^2\left(n^4-n^2+2n+2\right)\)
A=\(n^2\left(n+1\right)\left(n^3-n^2+2\right)\)
A=\(n^2\left(n+1\right)\left(n^3+1-n^2+1\right)\)
A=\(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
A=\(n^2\left(n+1\right)^2\left(n-1\right)+n^2\left(n+1\right)^2\)
nhận thấy n^2 -2n+2=\(\left(n-1\right)^2+1>\left(n-1\right)^2\)(1) (vì n>1)
vì n>1 => 2n>2
=>2n-2>0
=>\(n^2-\left(2n-2\right)< n^2\)
hay \(n^2-2n+2< n^2\)(2)
từ (1) và (2) =>\(\left(n-1\right)^2< n^2-2n+2< n^2\)
=>\(n^2-2n+2\)không là số chính phương
=> A= \(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) không là số chính phương
mình làm tắt chỗ nào không hiểu hỏi mình trả lời cho
Tổng sau là số chính phương ko ?
a)C=1+3+5+7+...+(2n-1)với n là số tự nhiên
b)D=2+4+6+8+...+2n với n là số tự nhiên
Cho n là một số tự nhiên lớn hơn 1. CMR \(n^6+2n^3-n^4+2n^2\) không là số chính phương
chứng minh bài này bằng phản chứng
phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được
\(\left(n+1\right)^2n^2\left[\left(n-1\right)^2+1\right]=y^2\)
muốn pt trên đúng thi \(\left(n-1\right)^2+1\)cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0
mà với n>1 =>n-1>0=>mâu thuẫn
Phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được
Muốn pt trên đúng thi cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0
Mà với n>1 =>n-1>0=>mâu thuan
tìm số tự nhiên n sao cho a=n^4-2n^3+3n^2-2n là số chính phương
Câu hỏi của Trương Anh Tú - Toán lớp 6 - Học toán với OnlineMath
Nếu n=0,suy ra A=0(thỏa mãn)
Nếu n=1 suy rs A=0(thỏa mãn)
Nếu n>1,ta có
A=n.(n^3-2.n^2+3n-2)
A=n.[n.(n^2-2n+3)-2]
A=n.[n.(n-1)^2+2.(n-1)]
A=n.(n-1).[n.(n-1)+2]
Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2 (tự chứng minh)
Suy ra A không phải là số chính phương với n>1
Vậy n={0;1}
Với n là số tự nhiên , A= \(n^6-n^4+2n^3+2n^2\). Chứng minh A không là số chính phương.
Quên cách làm thôi bn .. nếu bn bk thì giải ra đi
Ở đây là chỗ có thể đặt câu hỏi cũng như trả lời mak