Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hùng Phan Đức
Xem chi tiết
Vui lòng để tên hiển thị
28 tháng 3 2023 lúc 21:15

`A = n^2(n^4 - 2n^3 + 2n^2 - 2n + 1)` 

Để `A` chính phương thì `n^4 - 2n^3 + 2n^2 - 2n + 1 = a^2 (a in NN)`.

`<=> n^4 -2n^3 + n^2 + n^2- 2n +1 = a^2`

`<=> (n^2+1)(n-1)^2 = a^2`.

Vì `(n-1)^2` chính phương, `a^2` chính phương.

`=> n^2+1` chính phương.

Đặt `n^2+1 = b^2(b in NN)`.

`=> (b-n)(b+n) =1`

Mà `b, n in NN`.

`=> {(b-n=1), (b+n=1):}`

`<=> {(b=1), (n=0):}`

Vậy `n = 0`.

Bùi Lê Hân
Xem chi tiết
Nguyễn Tũn
7 tháng 8 2018 lúc 17:06

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

Phan Thanh
Xem chi tiết
Rhino
Xem chi tiết
tâm toàn
Xem chi tiết
Nguyên
30 tháng 7 2016 lúc 10:38

\(a=n^2\left(n^4-n^2+2n+2\right)\)

A=\(n^2\left(n+1\right)\left(n^3-n^2+2\right)\)

A=\(n^2\left(n+1\right)\left(n^3+1-n^2+1\right)\)

A=\(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

A=\(n^2\left(n+1\right)^2\left(n-1\right)+n^2\left(n+1\right)^2\)

nhận thấy n^2 -2n+2=\(\left(n-1\right)^2+1>\left(n-1\right)^2\)(1) (vì n>1)

vì n>1 => 2n>2

=>2n-2>0

=>\(n^2-\left(2n-2\right)< n^2\)

hay \(n^2-2n+2< n^2\)(2)

từ (1) và (2) =>\(\left(n-1\right)^2< n^2-2n+2< n^2\)

=>\(n^2-2n+2\)không là số chính phương

=> A= \(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) không là số chính phương

mình làm tắt chỗ nào không hiểu hỏi mình trả lời cho

Bùi Hồ Tường Vy
Xem chi tiết
Nameless
Xem chi tiết
phạm minh tâm
25 tháng 1 2018 lúc 19:51

chứng minh bài này bằng phản chứng

phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được

\(\left(n+1\right)^2n^2\left[\left(n-1\right)^2+1\right]=y^2\)

muốn pt trên đúng thi \(\left(n-1\right)^2+1\)cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0

mà với n>1 =>n-1>0=>mâu thuẫn

Dương Ngọc Thảo
8 tháng 1 lúc 21:55

Phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được

(�+1)2�2[(�−1)2+1]=�2

Muốn pt trên đúng thi (�−1)2+1cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0

Mà với n>1 =>n-1>0=>mâu thuan

Đường Yên
Xem chi tiết
ST
14 tháng 1 2018 lúc 17:04

Câu hỏi của Trương Anh Tú - Toán lớp 6 - Học toán với OnlineMath

Phước Lộc
8 tháng 2 2018 lúc 9:36

Nếu n=0,suy ra A=0(thỏa mãn)

Nếu n=1 suy rs A=0(thỏa mãn)

Nếu n>1,ta có

A=n.(n^3-2.n^2+3n-2)

A=n.[n.(n^2-2n+3)-2]

A=n.[n.(n-1)^2+2.(n-1)]

A=n.(n-1).[n.(n-1)+2]

Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2     (tự chứng minh)

Suy ra A không phải là số chính phương với n>1

                                Vậy n={0;1}

Nguyễn Thị Khánh Linh
Xem chi tiết
Nguyễn Thị Khánh Linh
30 tháng 1 2015 lúc 12:36

Quên cách làm thôi bn .. nếu bn bk thì giải ra đi 
Ở đây là chỗ có thể đặt câu hỏi cũng như trả lời mak