c/m rằng trong 1 tứ giác tổng 2 đường chéo thì nhỏ hơn chu vi của tứ giác ấy
Chứng minh rằng trong 1 tứ giác, tổng 2 đường chéo lớn hơn tổng 2 cạnh đối
Chứng minh rằng trong 1 tứ giác, tổng 2 đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy
giúp mk với :(
a) c/m rằng trong một tứ giác tổng hai đường chéo lớn hơn tổng hai cạnh đối.
b) C/m rằng trong một tứ giác tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác đấy.
b) Gọi tứ giác cần chứng minh là ABCD, giao điểm hai đường chéo AC và BD là O
Xét ΔABO có AO+OB>AB
Xét ΔCOD có OC+OD>CD
Xét ΔAOD có OA+OD>AD
Xét ΔBOC có OB+OC>BC
Ta có: AC+BD=AO+OB+OC+OD
\(\Leftrightarrow AC+BD>AB+CD\)
Ta có: AC+BD=AO+OD+OB+OC
\(\Leftrightarrow AC+BD>AD+BC\)
mà AC+BD>AB+CD
nên \(2\left(AC+BD\right)>AB+AD+BC+CD\)
\(\Leftrightarrow AC+BD>\dfrac{AB+AD+BC+CD}{2}\)
Xét ΔABD có BD<AB+AD
Xét ΔCBD có BD<BC+CD
Xét ΔABC có AC<AB+BC
Xét ΔADC có AC<AD+DC
Do đó: BD+BD+AC+AC<2(AB+AD+CD+BC)
\(\Leftrightarrow AC+BD< AB+AD+CD+BC\)(2)
Từ (1) và (2) ta suy ra ĐPCM
Chứng minh rằng trong một tứ giác:
a) tổng 2 đường chéo lớn hơn tổng 2 cạnh đối
b) tổng 2 đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi tứ giác đó và nhỏ hơn chu vi tứ giác đó:
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
* giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)
Bạn tham khảo ở đây :
/hoi-dap/question/76098.html
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy.
Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
* giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)
tự đặt tên vào hình nha :))
Xét tam giác AOB; tam giác BOC; tam giác COD; tam giác AOD ta có:
AO+BO>AB;BO+CO>BC;CO+DO>CD;AO+DO>AD
(áp dụng bất đẳng thức tam giác)
⇒AO+BO+BO+CO+CO+DO+AO+DO>AB+BC+CD+AD( còn đâu tự làm )
⇒2(AO+BO+CO+DO)>AB+BC+CD+AD
=
⇒2.(AC+BD)>AB+BC+CD+AD
chứng minh rằng trong một tứ giác,tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy.
Giả sử tứ giác đó là ABCD , hai đường chéo AC và BD cắt nhau tại O
Theo bất đẳng thức tam giác, ta có : \(AO+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OD+OA>AD\)\(\Rightarrow OA+OB+OB+OC+OC+OD+OD+OA>AB+BC+CD+DA\)
\(\Leftrightarrow2\left(AC+BD\right)>AB+BC+CD+AD\Leftrightarrow AC+BD>\frac{AB+BC+CD+AD}{2}\)
Theo bất đẳng thức tam giác : \(AB+BC>AC\) ; \(AD+DC>AC\); \(AB+AD>BD\) ;\(BC+CD>BD\)
\(\Rightarrow AB+BC+AD+DC+AB+AD+BC+CD>AC+AC+BD+BD\)
\(\Leftrightarrow2\left(AB+BC+CD+DA\right)>2\left(AC+BD\right)\Leftrightarrow AB+BC+CD+DA>AC+BD\)
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy ?
CM rằng trong 1 tứ giác , tổng 2 đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy .
Giúp mình nha những tấm lòng nhân ái !
giả sử tứ giác ABCD có :AB=a;BC=b;CD=c;DA=d.
gọi O là giao điểm của AC và BD ta có :
tương tự AC+BD>B+D
suy ra 2(AC+BD)>A+B+C+D => AC+BD=a+b+c+d2
vậy tổng hai đường chéo lớn hơn nửa chu vi của tứ giác
theo bất đẳng thức tam giác ta có
AC<a+b; AC<c+d
BD<b+c ;BD<a+d
=>2(AC+BD)<2(a+b+c+d)
=>AC+BD<a+b+c+d
vậy tổng hai đường chéo nhỏ hơn chu vi của tứ giác
B/ Cho Tứ giác ABCD, kẻ AC, BD, gọi O là giao của AC và BD:
ta có: AC = AO + OC < AB + BC ( BĐT )
AC = AO + OC < AD + CD ( BĐT )
BD = OD + OB < AC + CD ( BĐT )
BD = OD + OB < AB +AD ( BĐT )
=> 2AO + 2BO + 2CO + 2DO < 2AB + 2BC + 2CD + 2DA
=> AO + BO + CO + DO < AB + BC + CD + DA
A/ Ta có: OA + OB> AB ( BĐT )
OB + OC> BC ( BĐT )
OC + OD> CD ( BĐT )
OD + OA> AD ( BĐT )
=> 2( OA + OB + OC + OD ) > AB + BC + CD + DA
=> OA + OB + OC + OD > \(\frac{AB+BC+CD+DA}{2}\)
( TRY HARD TO STUDY, FRIEND ! )
Chứng minh rằng trong một tứ giác, tổng độ dài hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy
Gọi O là giao điểm của AC và BD.Ta có :
OA + OB > AB , OB + OC > AC ; OC + CD > CD , OD + OA > AD.Cộng từng vế các bất đẳng thức trên rồi chia cho 2 ,ta được \(AC+BD>\frac{AB+BC+CD+AD}{2}\)
Vậy tổng hai đường chéo lớn hơn nửa chu vi
Kết hợp : AC + BD < AB + BC + CD + DA
Vậy \(\frac{AB+BC+CD+AD}{2}< AC+BD< AB+BC< CD+DA\)
Đặt độ dài AB = a, BC = b, CD = c, AD = d
Gọi O là giao điểm hai đường chéo AC và BD
Trong ∆OAB, ta có:
OA + OA > a (bất đẳng thức tam giác) (1)
Trong ∆OCD ta có:
Từ (1) và (2) suy ra:
OA + OB + OC + OD > a + c
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi tứ giác ấy.
Theo bất đẳng thức tam giác , ta có : \(AO+OB>AB\)
\(OB+OC>BC\)
\(OC+OD>CD\)
\(OD+OA>AD\)
\(\Rightarrow2\left(OA+OB+OC+OD\right)>AB+BC+CD+DA\Leftrightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\)
Tương tự, ta có : \(AC< AB+BC\) ; \(AC< AD+CD\)\(BD< AB+AD\) ; \(BD< BC+CD\)
\(\Rightarrow2\left(AC+BD\right)< 2\left(AB+BC+CD+AD\right)\Leftrightarrow AC+BD< AB+BC+CD+AD\)
Vậy ta có : \(\frac{AB+BC+CD+AD}{2}< AC+BD< AB+BC+CD+AD\)
Chứng minh rằng trong một tứ giác thì :
a ) tổng độ dài 2 cạnh đối diện nhỏ hơn tổng độ dài 2 đường chéo
b ) tổng độ dài 2 đường chéo lớn hơn nửa chu vi của tứ giác nhưng nhỏ hơn chu vi tứ giác đó