Cho a>b Tính S biết
\(s=-\left(a-b-c\right)++\left(-c+b+a\right)-\left(a+b\right)\)
\(S=\frac{ab}{\left(b-c\right)\left(c-a\right)}+\frac{bc}{\left(a-b\right)\left(c-a\right)}+\frac{ca}{\left(b-c\right)\left(a-b\right)}\)
tính S
em mới học lớp 6 thôiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
dễ mà quy đồng S lên thì tử số nhóm vào y nguyên như mẫu số luôn mà bạn kết quả là -1 hay 1 gì đó thôi nháp là ra luôn mà
cho a,b,c là 3 số khác nhau đôi 1
Tính \(S=\frac{ab}{\left(b-c\right)\left(c-a\right)}+\frac{bc}{\left(a-b\right)\left(c-a\right)}+\frac{ac}{\left(b-c\right)\left(a-b\right)}\)
Ta có
\(1S=\frac{ab\left(a-b\right)+bc\left(b-c\right)+ac\left(c-A\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Xét tử ta có Tử = ba2 - ab2 + cb2 - bc2 + ac2 - ca2
= (ba2 - bc2) + (ac2 - ca2) + (- ab2 + cb2)
= (a - c)(ab + bc - ac - b2)
= (a - c)(b - c)(a - b)
Từ đó => S = - 1
Tính tổng \(S=\frac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}+\frac{\left(x-a\right)\left(x-c\right)}{\left(b-a\right)\left(b-c\right)}+\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}\) với a,b,c đôi một khác nhau
Cho a, b , c là ba số dôi một khác nhau .
Tính \(S=\frac{ab}{\left(b-c\right)\left(c-2\right)}+\frac{bc}{\left(c-a\right)\left(a-b\right)}+\frac{ac}{\left(a-b\right)\left(b-c\right)}\)
Help me!! CTV ai giúp vs
NHầm rồi \(\frac{ab}{\left(b-c\right)\left(c-a\right)}\) nhé
CTV mới được làm à :V
Đặt \(x=\frac{a}{b-c}\) ; \(y=\frac{b}{c-a}\) ; \(z=\frac{c}{a-b}\)
Ta có : \(\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(=\left(x-1\right)\left(y-1\right)\left(z-1\right)\left(=\frac{2abc}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right)\)
\(\Rightarrow xyz+zy+yz+zx+z+y+z+1\)
\(=xyz-\left(xy+yz+zx\right)+x+y+z-1\)
\(\Rightarrow2\left(xy+yz+zx\right)=-2\)
\(\Rightarrow xy+yz+zx=-1\)
Vậy ................
Mình làm theo cô hướng dẫn sai thì thôi nha .
Tổng \(S=\dfrac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^2-ac}{\left(b+c\right)\left(b+a\right)}+\dfrac{c^2-ab}{\left(c+a\right)\left(c+b\right)}=\)
Cho a+b+c=3
Tính S=\(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
Đầu tiên bạn hãy tự phân tích tử số nha, kết quả là:
\(a^3+b^3+c^3-3abc=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)
Ta có: \(a+b+c=3\)
Vậy thay vào biểu thức, ta sẽ được:
\(S=\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
\(\Leftrightarrow S=\frac{\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
\(\Leftrightarrow S=\frac{1}{2}\left(a+b+c\right)\)
\(\Leftrightarrow S=\frac{1}{2}.3\)
\(\Leftrightarrow S=\frac{3}{2}\)
Chúc bạn học giỏi và tíck cho mìk vs nha Đỗ Nguyễn Hiền Thảo!
Cho ba số thực không âm \(a;b;c\) và thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\). Chứng minh rằng :
\(\sqrt{\left(a+b+1\right).\left(c+2\right)}+\sqrt{\left(b+c+1\right).\left(a+2\right)}+\sqrt{\left(c+a+1\right).\left(b+2\right)}\ge9\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn giúp đỡ, em cám ơn rất nhiều ạ!
Cho a, b, c là ba số phân biệt. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của x:
\(S\left(x\right)=\dfrac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}+\dfrac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\dfrac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}\)
\(\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
Thực hiện phép tính
p/s: nhờ mng giúp e e cần gấp trước chiều nay e cám ơn nhiềuu
\(\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
\(=-\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=-\frac{a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(b-a\right)}\)
\(=-\frac{-c\left(a^2-b^2\right)+ab\left(a-b\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-\frac{\left(a-b\right)\left[-c\left(a+b\right)+ab+c^2\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=-\frac{\left(a-b\right)\left(-ac-bc+ab+c^2\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{-\left(a-b\right)\left[-b\left(c-a\right)+c\left(c-a\right)\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=-\frac{\left(a-b\right)\left(c-a\right)\left(-b+c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(a-b\right)\left(c-a\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)