giải phương trình
\(3x^2+4y^2+5z^2+4xy-4yz-6xz-2x-4y-2z+3=0\)
Tìm x y z biết \(3x^2+4y^2+5z^2+4xy-4yz-6zx-2x-4y-2z+3=0\)
Giải phương trình \(5x^2+4y^2+2=4xy+2x+4y\\\)
Tìm x,y biết : \(\dfrac{3x-2y}{4}\)=\(\dfrac{2z-4x}{3}\)=\(\dfrac{4y-3z}{2}\)và 2x-3y+5z=-30
TA có: \(\frac{3x-2y}{4}=\frac{2z-4x}{2}=\frac{4y-3z}{2}\)
=>\(\frac{12x-8y}{16}=\frac{6z-12x}{6}=\frac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{12x-8y}{16}=\frac{6z-12x}{6}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+6+4}=0\)
=>12x=8y=6z
=>6x=4y=3z
=>\(\frac{6x}{12}=\frac{4y}{12}=\frac{3z}{12}\)
=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
mà 2x-3y+5z=-30
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2x-3y+5z}{2\cdot2-3\cdot3+5\cdot4}=\frac{-30}{4-9+20}=\frac{-30}{15}=-2\)
=>\(\begin{cases}x=-2\cdot2=-4\\ y=-2\cdot3=-6\\ z=-2\cdot4=-8\end{cases}\)
Giải hệ phương trình: \(\hept{\begin{cases}x^2-4xy+x+2y=0\\x^4-8x^2y+3x^2+4y^2=0\end{cases}}\)
Cho đa thức :A=3x-2y^2-2z,B=2z-x^2-4y;C=4y-5z^2-3x với x,y,z là các số khác 0.Chứng minh rằng trong 3 số trên có ít nhất 1 đa thức có giá trị âm.
giúp với!
Tìm x,y,z biết: a) x^2+y^2-4x+4y+8=0 b) 5x^2-4xy+y^2=0 c) x^2+2y^2+z^2-2xy-2y-4z+5=0 d) 3x^2+3y^2+3xy-3x+3y+3=0 e) 2x^2+y^2+2z^2-2xy-2xz+2yz-2z-2z-2x+2=0
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
d)3x2+3y2+3xy-3x+3y+3=0
⇔ 6x2+6y2+6xy-6x+6y+6=0
⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
giải phương trình : 2x^2 - 3x -2 = 0 ;x^2 +2y^2 - 2xy + 4y = -4
2x^2 - 3x -2 = 0
<=>2x2+x-4x-2=0
<=>x.(2x+1)-2.(2x+1)=0
<=>(2x+1)(x-2)=0
<=>2x+1=0 hoặc x-2=0
<=>x=-1/2 hoặc x=2
x^2 +2y^2 - 2xy + 4y = -4
<=>x2+2y2-2xy+4y+4=0
<=>x2-2xy+y2+y2+4y+4=0
<=>(x-y)2+(y+2)2=0
<=>x-y=0 và y+2=0
*y+2=0
<=>x=-2
*x-y=0
<=>x=y=-2
1. 2x^2 - 3x - 2 = 0 <=> đen ta = 3^2 - 4x2x-2 = 25 > 0 <=> x1 = -0.5: x2= 2
giải hệ phương trình sau
\(\hept{\begin{cases}x^2\left(y+z\right)^2=\left(3x^2+x+1\right)y^2z^2\\y^2\left(x+z\right)^2=\left(4y^2+y+1\right)z^2x^2\\z^2\left(y+x\right)^2=\left(5z^2+x+1\right)x^2y^2\end{cases}}\)
\(HPT\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{y}+\frac{1}{z}\right)^2=3+\frac{1}{x}+\frac{1}{x^2}\\..\\...\end{cases}}\)
đến đây cộng vế 3 PT ta sẽ tính được \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) khi đó thay vào PT đầu giải
Xét (x,y,z)=(0,0,m),(0,n,0),(p,0,0) là nghiệm của hệ(m,n,p\(\in\)R)
Xét xyz\(\ne\)0
hpt\(\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{y}+\frac{1}{z}\right)^2\\\left(\frac{1}{z}+\frac{1}{x}\right)^2\\\left(\frac{1}{x}+\frac{1}{y}\right)^2\end{cases}}\)
Đặt\(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\)
hệ tt
\(\hept{\begin{cases}a^2+a+3=\left(b+c\right)^2\\b^2+b+4=\left(c+a^2\right)\\c^2+c+5=\left(a+b\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}\left(a+b+c+\frac{1}{2}\right)\left(b+c-a-\frac{1}{2}\right)=\frac{11}{4}\\\left(a+b+c+\frac{1}{2}\right)\left(c+a-b-\frac{1}{2}\right)=\frac{15}{4}\\\left(a+b+c+\frac{1}{2}\right)\left(a+b-c-\frac{1}{2}\right)=\frac{19}{4}\end{cases}}}\)
đặt rồi tự giải tiếp
Trong các phương trình sau phương trình nào là phương trình bật nhất a,3+3x=0. b,5-4y=0. c,z^2-2z=0. d,7t=0
Các phương trình bậc nhất là \(3+3x=0\)(a); \(5-4y=0\)(b); \(7t=0\)(d)